In this paper we discuss on the uniquenss of the solution of partial differential equations: (1) $${\frac{{\partial}w}{{\partial}{\bar{z}}}}=F(z,\;w,\;{\frac{{\partial}w}{{\partial}z}}}+G(z,\;w.{\bar{w})$$ in the sobolev space $W_{1,p}(D)$.
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106803181
2005
English
KCI등재,ESCI
학술저널
205-209(5쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper we discuss on the uniquenss of the solution of partial differential equations: (1) $${\frac{{\partial}w}{{\partial}{\bar{z}}}}=F(z,\;w,\;{\frac{{\partial}w}{{\partial}z}}}+G(z,\;w.{\bar{w})$$ in the sobolev space $W_{1,p}(D)$.
In this paper we discuss on the uniquenss of the solution of partial differential equations: (1) $${\frac{{\partial}w}{{\partial}{\bar{z}}}}=F(z,\;w,\;{\frac{{\partial}w}{{\partial}z}}}+G(z,\;w.{\bar{w})$$ in the sobolev space $W_{1,p}(D)$.
Invertible interpolation on AX=Y in a Tridiagonal algebra Alg□
Results on HyperK-algebras of order 3
Taut structures in an ideal triangulation with two or three tetrahedra