RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      나노 솔더링 기술에 의한 Ag계 복합 잉크의 고속 소결

      한글로보기

      https://www.riss.kr/link?id=A105302990

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To develop a fast formation method of conductive films by liquid phase sintering using a normal reflow process, a composite ink was fabricated by mixing a commercial ink containing Ag particles of 60 nm size and Sn-58Bi nanoparticles of 40 nm average ...

      To develop a fast formation method of conductive films by liquid phase sintering using a normal reflow process, a composite ink was fabricated by mixing a commercial ink containing Ag particles of 60 nm size and Sn-58Bi nanoparticles of 40 nm average size. In addition, the composite ink was spin-coated and reflow soldered at the nanoscale, that is finally transformed into a conductive film. Although the sheet resistance in a film made of pure Ag nanoparticles was as high as 1.24 Ω/□ under the temperature profile with a peak temperature of 174 ℃, the sheet resistance values after the addition of 0.003 g flux and Sn-58Bi nanoparticles became considerably low. In special, the sheet resistance decreased to the minimum values of 0.18 Ω/□ when the added amount of Sn-58Bi was 12 wt.%. Ag particles in a microstructure in the composite films grew into outstandingly big grains through agglomeration among the Ag particles by melting and wetting of Sn-58Bi and connectivity between the grains was also considerably enhanced. Meanwhile, the amount of unreacted Sn- 58Bi nanoparticles between the agglomerated grains increase and contact property between the agglomerated grains decrease when the added amount exceeded 12 wt.%, which gradually increasing the resistance. Excessive flux addition of 0.006 g increased the sheet resistance.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 실험 방법
      • 3. 실험 고찰
      • 4. 결론
      • Abstract
      • 1. 서론
      • 2. 실험 방법
      • 3. 실험 고찰
      • 4. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 김광석, "잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가" 한국마이크로전자및패키징학회 17 (17): 43-49, 2010

      2 강호주, "유연 기판을 이용한 PLC소자 제작을 위한 롤투롤 공정 연구" 한국마이크로전자및패키징학회 22 (22): 25-29, 2015

      3 K. Hwang, "Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells" 27 : 1241-1247, 2015

      4 D. Angmo, "Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration" 3 : 172-175, 2013

      5 J. Perelaer, "Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure, From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds" 24 : 2620-2625, 2012

      6 R. Abbel, "Photonic Flash Sintering of Silver Nanoparticle Inks, A Fast and Convenient Method for the Preparation of Highly Conductive Structures on Foil" 2 : 145-150, 2012

      7 J. Zhao, "Observation of the Solidification Microstructure of Sn3.5Ag Droplets Prepared by CDCA Technique" 23 (23): 2221-2228, 2012

      8 Y. Gao, "Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy" 484 (484): 777-781, 2009

      9 M. Singh, "Inkjet Printing-Process and Its Applications" 22 : 673-685, 2010

      10 P. Calvert, "Inkjet Printing for Materials and Devices" 13 (13): 3299-3305, 2001

      1 김광석, "잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가" 한국마이크로전자및패키징학회 17 (17): 43-49, 2010

      2 강호주, "유연 기판을 이용한 PLC소자 제작을 위한 롤투롤 공정 연구" 한국마이크로전자및패키징학회 22 (22): 25-29, 2015

      3 K. Hwang, "Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells" 27 : 1241-1247, 2015

      4 D. Angmo, "Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration" 3 : 172-175, 2013

      5 J. Perelaer, "Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure, From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds" 24 : 2620-2625, 2012

      6 R. Abbel, "Photonic Flash Sintering of Silver Nanoparticle Inks, A Fast and Convenient Method for the Preparation of Highly Conductive Structures on Foil" 2 : 145-150, 2012

      7 J. Zhao, "Observation of the Solidification Microstructure of Sn3.5Ag Droplets Prepared by CDCA Technique" 23 (23): 2221-2228, 2012

      8 Y. Gao, "Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy" 484 (484): 777-781, 2009

      9 M. Singh, "Inkjet Printing-Process and Its Applications" 22 : 673-685, 2010

      10 P. Calvert, "Inkjet Printing for Materials and Devices" 13 (13): 3299-3305, 2001

      11 P. J. Smith, "Direct Ink-Jet Printing and Low Temperature Conversion of Conductive Silver Patterns" 41 : 4153-4158, 2006

      12 C. H. Kim, "Design of Roll-to-Roll Printing Equipment with Multiple Printing Methods for Multi-Layer Printing" 82 : 065001-, 2012

      13 T. Araki, "Cu Salt Ink Formulation for Printed Electronics Using Photonic Sintering" 29 (29): 11192-11197, 2013

      14 A. Rida, "Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications" 51 : 13-23, 2009

      15 H. -J. Hwang, "All-Photonic Drying and Sntering Process via Fash Wite Light Combined with Deep-UV and Near-Infrared Irradiation for Highly Conductive Copper Nano-Ink" 6 : 19696-, 2016

      16 S. H. Ko, "All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles" 18 : 345202-, 2007

      17 A. L. Dearden, "A Low Curing Temperature Silver Ink for Use in Ink-Jet Printing and Subsequent Production of Conductive Tracks" 26 : 315-318, 2005

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-05 학술지명변경 외국어명 : Journal of The Korean Welding and Joining Society -> Journal of Welding and Joining KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-02-20 학회명변경 한글명 : 대한용접학회 -> 대한용접접합학회
      영문명 : The Korean Welding Society -> The Korean Welding and Joining Society
      KCI등재
      2007-02-20 학술지명변경 한글명 : 대한용접학회지 -> 대한용접접합학회지
      외국어명 : Journal of The Korean Welding Society -> Journal of The Korean Welding and Joining Society
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.3 0.458 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼