RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Joint Load Balancing and Interference Mitigation in 5G Heterogeneous Networks

      한글로보기

      https://www.riss.kr/link?id=A107506349

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>We study the problem of joint load balancing and interference mitigation in heterogeneous networks in which massive multiple-input multiple-output macro cell base station (BS) equipped with a large number of antennas, overlaid with wireless self-backhauled small cells (SCs), is assumed. Self-backhauled SC BSs with full-duplex communication employing regular antenna arrays serve both macro users and SC users by using the wireless backhaul from macro BS in the same frequency band. We formulate the joint load balancing and interference mitigation problem as a network utility maximization subject to wireless backhaul constraints. Subsequently, leveraging the framework of stochastic optimization, the problem is decoupled into dynamic scheduling of macro cell users, backhaul provisioning of SCs, and offloading macro cell users to SCs as a function of interference and backhaul links. Via numerical results, we show the performance gains of our proposed framework under the impact of SCs density, number of BS antennas, and transmit power levels at low and high frequency bands. It is shown that our proposed approach achieves a 5.6 times gain in terms of cell-edge performance as compared with the closed-access baseline in ultra-dense networks with 350 SC BSs per km(2).</P>
      번역하기

      <P>We study the problem of joint load balancing and interference mitigation in heterogeneous networks in which massive multiple-input multiple-output macro cell base station (BS) equipped with a large number of antennas, overlaid with wireless s...

      <P>We study the problem of joint load balancing and interference mitigation in heterogeneous networks in which massive multiple-input multiple-output macro cell base station (BS) equipped with a large number of antennas, overlaid with wireless self-backhauled small cells (SCs), is assumed. Self-backhauled SC BSs with full-duplex communication employing regular antenna arrays serve both macro users and SC users by using the wireless backhaul from macro BS in the same frequency band. We formulate the joint load balancing and interference mitigation problem as a network utility maximization subject to wireless backhaul constraints. Subsequently, leveraging the framework of stochastic optimization, the problem is decoupled into dynamic scheduling of macro cell users, backhaul provisioning of SCs, and offloading macro cell users to SCs as a function of interference and backhaul links. Via numerical results, we show the performance gains of our proposed framework under the impact of SCs density, number of BS antennas, and transmit power levels at low and high frequency bands. It is shown that our proposed approach achieves a 5.6 times gain in terms of cell-edge performance as compared with the closed-access baseline in ultra-dense networks with 350 SC BSs per km(2).</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼