RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Estimation of Solar Panel Output based on Weather Parameters using Machine Learning Algorithms

      한글로보기

      https://www.riss.kr/link?id=A107161062

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Solar energy is one of the most extensively used renewable energy sources. However, it is highly variable and needs accurate estimation for its wide range of integration into the electricity grid. Solar voltage and current are estimated in areas where...

      Solar energy is one of the most extensively used renewable energy sources. However, it is highly variable and needs accurate estimation for its wide range of integration into the electricity grid. Solar voltage and current are estimated in areas where only sunlight is considered as a primary solar parameter, and information about their weather conditions are unknown. Weather plays a vital role in the prediction of solar panel output. In this paper, we propose solar panel output prediction considering the solar panel and weather parameters using machine learning algorithms. We estimate the solar panel voltage and current consider the weather parameters such as temperature, humidity, rain rate, wind speed, and wind direction. For estimating the output voltage and current, Linear Regression (LR) and Artificial Neural Network (ANN) are applied on weather and solar data. The datasets are extracted from Bancroft close 49KW substation, which is placed in the UK, for three months. The performance of the given model is evaluated using two matrices Root Mean Square Error (RMSE) and Absolute Error (AE). The Neural Network shows better accuracy compared to the linear regression.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1-INTRODUCTION
      • 2-THE PROPOSED ARCHITECTURE FOR SOLAR PANEL OUTPUT PREDICATION
      • 3-RESULTS AND DISCUSSION
      • CONCULSION
      • ABSTRACT
      • 1-INTRODUCTION
      • 2-THE PROPOSED ARCHITECTURE FOR SOLAR PANEL OUTPUT PREDICATION
      • 3-RESULTS AND DISCUSSION
      • CONCULSION
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼