RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      지형분류를 이용한 산지 토양 예측가능성 = Predictability of soil properties in mountain regions using landform classification

      한글로보기

      https://www.riss.kr/link?id=A101102854

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study aims to propose an improved approach for soil prediction in mountain regions using landform classification. Four representative landform classification methodologies(process based, statistically based, and object based techniques) of soil p...

      This study aims to propose an improved approach for soil prediction in mountain regions using landform classification. Four representative landform classification methodologies(process based, statistically based, and object based techniques) of soil prediction were selected and each method has been assessed using the obtained soil data. The landform classification methods explained 15~28% of the total variance of the soil properties in our study area. The process-based method estimated 15~28% of the variation in the exchangeable cations (Ca2+, Mg2+, and K+) at significant levels. The statistically-based approach showed statistical significances in fine particles and Na+(17~21%). The object-based one, however, failed to separate soil properties at significant levels. In summary, the result showed that the predictive values of landform classification turn out to be lower than expected. The causes of this gap can be twofold; first, the inattention to consider optimizations of window sizes in the landform analysis process, second, the fundamental limitation of the method that it cannot perfectly reflect the true variation of spatially continuous soil properties within the selected landform unit.

      더보기

      참고문헌 (Reference)

      1 이정빈, "객체 기반 영상 분류에서 최적 가중치 선정과 정확도 분석 연구" 대한원격탐사학회 23 (23): 521-528, 2007

      2 Baatz, M., "eCognition professional user guide 4" Definiens Imaging 2004

      3 Dikau, R., "Three Dimensional Applications in Geographical Information Systems" Taylor Francis Group 1989

      4 Deng, Y., "The role of attribute selection in GIS representations of the biophysical environment" 96 : 47-63, 2006

      5 Conacher, A., "The nine unit landsurface model: an approach to pedogeomorphic research" 18 : 1-153, 1977

      6 Wood, J., "The geomorphological characterisation of digital elevation models" University of Leicester 1996

      7 Smith, M., "The effects of DEM resolution and neighborhood size on digital soil survey" 137 : 58-69, 2006

      8 Ventura, S., "Terrain analysis: principles and applications" Wiley 2000

      9 McKenzie, N., "Spatial prediction of soil properties using environmental correlation" 89 : 67-94, 1999

      10 Ballabio, C., "Spatial prediction of soil properties in temperate mountain regions using support vector regression" 151 : 338-350, 2009

      1 이정빈, "객체 기반 영상 분류에서 최적 가중치 선정과 정확도 분석 연구" 대한원격탐사학회 23 (23): 521-528, 2007

      2 Baatz, M., "eCognition professional user guide 4" Definiens Imaging 2004

      3 Dikau, R., "Three Dimensional Applications in Geographical Information Systems" Taylor Francis Group 1989

      4 Deng, Y., "The role of attribute selection in GIS representations of the biophysical environment" 96 : 47-63, 2006

      5 Conacher, A., "The nine unit landsurface model: an approach to pedogeomorphic research" 18 : 1-153, 1977

      6 Wood, J., "The geomorphological characterisation of digital elevation models" University of Leicester 1996

      7 Smith, M., "The effects of DEM resolution and neighborhood size on digital soil survey" 137 : 58-69, 2006

      8 Ventura, S., "Terrain analysis: principles and applications" Wiley 2000

      9 McKenzie, N., "Spatial prediction of soil properties using environmental correlation" 89 : 67-94, 1999

      10 Ballabio, C., "Spatial prediction of soil properties in temperate mountain regions using support vector regression" 151 : 338-350, 2009

      11 Jeong, G. Y., "Spatial distribution and predictability of soil properties in mountain regions" 57 : 21-42, 2011

      12 Moran, C., "Spatial data mining for enhanced soil map modelling" 16 (16): 533-549, 2002

      13 Reuter, H. I., "Spatial crop and soil landscape processes under special consideration of relief information" University of Hannover 2004

      14 Milne, G., "Some suggested units of classification and mapping particularly for East Africa" 4 (4): 183-198, 1935

      15 Thompson, J., "Soil-landscape modeling across a physiographic region: Topographic patterns and model transportability" 133 : 57-70, 2006

      16 S.J.Park, "Soil-landscape analysis as a tool for sustainable land management" 국토지리학회 36 (36): 1-49, 2002

      17 Burrough, P. A., "Soil variability: a late 20th century view" 56 (56): 529-562, 1993

      18 Miralles, I., "Soil quality and organic carbon ratios in mountain agroecosystems of South-east Spain" 150 : 120-128, 2009

      19 Yimer, F., "Soil property variations in relation to topographic aspect and vegetation community in the southeastern highlands of Ethiopia" 232 : 90-99, 2006

      20 Brubaker, S., "Soil properties associated with landscape position" 57 : 235-239, 1993

      21 Huggett, R., "Soil landscape systems: a model of soil genesis" 13 (13): 1-22, 1975

      22 Basile, A., "Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998" 117 : 331-346, 2003

      23 Moore, I., "Soil attribute prediction using terrain analysis" 57 (57): 443-443, 1993

      24 Maynard, J. J., "Scaledependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent" 230-231 : 29-40, 2014

      25 Kim, D., "Scale-dependent predictability of DEM-based landform attributes for soil spatial variability in a coastal dune system" 164 : 181-194, 2011

      26 Scull, P., "Predictive soil mapping: a review" 27 (27): 171-197, 2003

      27 Sohn, H. G., "Policy directions for rational classification and management of forestland by considering the mountain ridge and valley networks" Korea Research Institute for Human Settlements 2010

      28 Reuter, H. I., "Optimisation of relief classification for differnet levels of generalisation" 77 : 79-89, 2006

      29 Hay, G., "Object-based image analysis: strengths, weaknesses, opportunities and threats(SWOT), International Archives of Photogrammetry" 6 : 1-5, 2006

      30 Gercek, D., "Object-based classification of landforms based on their local geometry and geomorphometric context" Middle East Technical University 2010

      31 NAAS, "Methods of soil chemical analysis" National Academy of Agricultural Science 2010

      32 Pennock, D. J., "Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada" 40 : 297-315, 1987

      33 박수진, "Influence of Grid Cell Size and Flow Routing Algorithm on Soil-Landform Modeling" 대한지리학회 44 (44): 122-145, 2009

      34 Park, S. J., "Identification of the spatial distribution of soils using a process-based terrain characterization" 103 : 249-272, 2001

      35 Burrough, P. A., "High-resolution landform classification using fuzzy k-means" 113 : 37-52, 2000

      36 Gessler, P., "Geomorphometry: Concepts, Software, Applications" Elsevier 2009

      37 MacMillan, R., "Geomorphometry: Concepts, Software, Applications" Elsevier 2009

      38 Lane, P., "Generalized linear models in soil science" 53 (53): 241-251, 2002

      39 Schmidt, J., "Fuzzy land element classification from DTMs based on geometry and terrain position" 121 : 243-256, 2004

      40 Irvin, B., "Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin" 77 : 137-154, 1997

      41 Gerrard, J., "Fundamentals of soils" Routledge 2000

      42 Jenny, H., "Factors of Soil Formation: A System of Quantitative Pedology" McGrawHil 1941

      43 Minar, J., "Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping" 95 : 236-259, 2008

      44 Erskine, R. H., "Digital elevation accuracy and grid cell size: Effects on estimated terrain attributes" 71 (71): 1371-1380, 2007

      45 Lagacherie, P., "Digital Soil Mapping with Limited Data" Springer 2008

      46 Conrad, O., "DiGem-Software for Digital Elevation Model" University of Gottingen 1998

      47 MacMillan, R., "Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models(DEMs), Computers" 28 (28): 175-200, 2004

      48 Burrough, P. A., "Continuous classification in soil survey: spatial correlation, confusion and boundaries" 77 : 115-135, 1997

      49 Adediran, A. O., "Computer-assisted discrimination of morphological units on north-central Crete(Greece) by applying multivariate statistics to local relief gradients" 58 : 357-370, 2004

      50 Freeman, T. G., "Calculating catchment area with divergent flow based on a regular grid" 17 (17): 413-422, 1991

      51 Hughes, M., "Automatic landform stratification and environmental correlation for modelling loess landscapes in North Otago, South Island, New Zealand" 149 : 92-100, 2009

      52 Dragut, L., "Automated classification of landform elements using object-based image analysis" 81 : 330-344, 2006

      53 Cavazzi, S., "Are fine resolution digital elevation models always the best choice in digital soil mapping?" 195-196 : 111-121, 2013

      54 Ziadat, F. M., "Analyzing digital terrain attributes to predict soil attributes for a relatively large area" 69 : 1590-1599, 2005

      55 Han, S., "Analysis of variance" Hannarae academy 2009

      56 Zhu, A., "Advances in Digital Terrain Analysis" Springer 2008

      57 Zhu, A., "A similarity model for representing soil spatial information" 77 : 217-242, 1997

      58 MacMillan, R. A., "A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic" 113 (113): 81-109, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.68 0.68 0.65
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.7 0.71 0.769 0.28
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼