RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Approach for a smart device for active vibration suppression as an add-on for robot-based systems

      한글로보기

      https://www.riss.kr/link?id=A103788784

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines andthe endeffector. In particular, articulated robots have a serial structure. They have to carry the drive engine of ...

      Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines andthe endeffector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, whichresults in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a qualityimproving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motiontasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speedand precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device todecouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables activevibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanismprovides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components.

      First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation resultsthe characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamicalissues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed.

      The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.

      더보기

      참고문헌 (Reference)

      1 A. Sawicki, "The effect of intraply overlaps and gaps upon the compression strength of composite laminates" Am. Inst. Aeronaut. Astronaut. Inc 744-754, 1998

      2 S. Algermissen, "Smart-structures technology for parallel robots" 63 (63): 547-574, 2011

      3 M. Perner, "Smart device for advanced robot-based automation: The system design" 1-6, 2013

      4 D. Groppe, "Robotic ‘layup’ of composite materials" 23 (23): 153-158, 2003

      5 A. Puzik, "Robot machining with additional 3-D-Piezo-actuation-mechanism for error compensation" 2010

      6 Physik Instrumente (PI) GmbH & Co. KG, "PICA Stack Piezo Actuators P-007- P-056"

      7 P. Roebrock, "Offline path correction system for industrial robots" 276-280, 2007

      8 C. Krombholz, "Improving the production quality of the advanced automated fiber placement process by means of online path correction" 1-10, 2012

      9 A. Puzik, "Genauigkeitssteigerung bei der spanenden Bearbeitung mit Industrierobotern durch Fehlerkompensation mit 3D-Piezo-Ausgleichsaktorik" Universität Stuttgart 2011

      10 K. Croft, "Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates" 42 (42): 484-491, 2011

      1 A. Sawicki, "The effect of intraply overlaps and gaps upon the compression strength of composite laminates" Am. Inst. Aeronaut. Astronaut. Inc 744-754, 1998

      2 S. Algermissen, "Smart-structures technology for parallel robots" 63 (63): 547-574, 2011

      3 M. Perner, "Smart device for advanced robot-based automation: The system design" 1-6, 2013

      4 D. Groppe, "Robotic ‘layup’ of composite materials" 23 (23): 153-158, 2003

      5 A. Puzik, "Robot machining with additional 3-D-Piezo-actuation-mechanism for error compensation" 2010

      6 Physik Instrumente (PI) GmbH & Co. KG, "PICA Stack Piezo Actuators P-007- P-056"

      7 P. Roebrock, "Offline path correction system for industrial robots" 276-280, 2007

      8 C. Krombholz, "Improving the production quality of the advanced automated fiber placement process by means of online path correction" 1-10, 2012

      9 A. Puzik, "Genauigkeitssteigerung bei der spanenden Bearbeitung mit Industrierobotern durch Fehlerkompensation mit 3D-Piezo-Ausgleichsaktorik" Universität Stuttgart 2011

      10 K. Croft, "Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates" 42 (42): 484-491, 2011

      11 Y. Tian, "Design and forward kinematics of the compliant micro-manipulator with lever mechanisms" 33 (33): 466-475, 2009

      12 J. A. Chestney, "Control and integration techniques in a fully automated manufacturing cell for carbon composites" 143 (143): 159-, 1996

      13 M. Perner, "Clarifying vibrational issues of an advanced automated fiber placement production plant, in Advanced Intelligent Mechatronics (AIM)" 111-116, 2012

      14 B. Stumpp, "CFRP processing: countdown to series production maturity?" 2 : 50-52, 2011

      15 B. Stumpp, "CFK: Wo bleibt die Automatisierung?"

      16 C. Krombholz, "Advanced automated fibre placement" 2013

      17 J. Hesselbach, "Adaptronics in machine tools" 7 : 83-86, 2000

      18 J. Fleischer, "Adaptronical compensation of geometrical machine errors" 6 (6): 303-309, 2012

      19 R. Keimer, "Active vibration suppression in parallel mechanisms for handling and assembly" 2008

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼