RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Thermal performance and orientation effect of an inclined cross-cut cylindrical heat sink for LED light bulbs

      한글로보기

      https://www.riss.kr/link?id=A107523681

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An inclined cross-cut cylindrical heat sink was investigated in an attempt to improve the energy conversion and management of LED light bulbs. The thermo-flow characteristics were studied to enhance the cooling performance of a cylindrical heat sink, ...

      An inclined cross-cut cylindrical heat sink was investigated in an attempt to improve the energy conversion and management of LED light bulbs. The thermo-flow characteristics were studied to enhance the cooling performance of a cylindrical heat sink, which is the cooling apparatus used for LED light bulbs. In the inclined cross-cut heat sink, the natural convection flow with an incidence angle had a flow path length that was more stretched in comparison to the flow path length of a straight cross-cut heat sink. Accordingly, the heat transfer rate between the air and fins was increased. When the fins had an inclined angle of 25-30<SUP>o</SUP>, the thermal resistance was the smallest. However, when the inclined angle increased to greater than 50<SUP>o</SUP>, only the blocking effect was increased and the flow path length was not stretched. Hence, cooling performance was decreased with inclined angles greater than 50<SUP>o</SUP>. A correlation predicting the degree of improvement in cooling performance relative to a baseline straight cross-cut heat sink was suggested as a function of heat sink design variables and the installation angle of the heat sink. Finally, a contour map was developed, which can be used to select the optimum heat sink type, with respect to the installation angle of the heat sink and the inclined angle of the fins.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼