To extend the well-known extremal characterization of the geometric mean of two n × n positive definite matrices A and B, we solve the following problem: $${\max}\{X:X=X^*,\;\(\array{A&V&X\\V&B&W\\X&W&C}\){\geq}0\}$$. We find an explicit expres...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106825988
2020
English
SCIE,SCOPUS,KCI등재
학술저널
641-653(13쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
To extend the well-known extremal characterization of the geometric mean of two n × n positive definite matrices A and B, we solve the following problem: $${\max}\{X:X=X^*,\;\(\array{A&V&X\\V&B&W\\X&W&C}\){\geq}0\}$$. We find an explicit expres...
To extend the well-known extremal characterization of the geometric mean of two n × n positive definite matrices A and B, we solve the following problem: $${\max}\{X:X=X^*,\;\(\array{A&V&X\\V&B&W\\X&W&C}\){\geq}0\}$$. We find an explicit expression of the maximum value with respect to the matrix geometric mean of Schur complements.
ON COMPLETE CONVERGENCE FOR EXTENDED INDEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS
THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES
CONSTRUCTION OF RECURSIVE FORMULAS GENERATING POWER MOMENTS OF KLOOSTERMAN SUMS: O+(2n, 2r) CASE
WEIGHTED HARDY INEQUALITIES WITH SHARP CONSTANTS