RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Incorporating Limestone Powder and Ground Granulated Blast Furnace Slag in Ultra-high Performance Concrete to Enhance Sustainability

      한글로보기

      https://www.riss.kr/link?id=A109419180

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      While ultra-high performance concrete (UHPC) offers numerous advantages, it also presents specific challenges, primarily due to its high cost and excessive cement content, which can pose sustainability concerns. To address this challenge, this study aims to develop cost-effective and sustainable UHPC mixtures by incorporating ground granulated blast furnace slag (GGBFS) and limestone powder (LP) as partial replacements for portland cement. Eight fiber-reinforced UHPC mixtures were investigated, with a water-to-cementitious materials (w/cm) ratio of 0.15. In four of the UHPC mixtures, 25% of the cement was replaced with GGBFS, and further, LP was added as a mineral filler, partially substituting up to 20% of the cement. In the remaining four mixtures, cement was replaced with only LP up to 20% (without GGBFS). The 28-day compressive strength of the UHPC mixture with 25% GGBFS and 20% LP was 149 MPa, 3.50% lower than the mixture without GGBFS. Its 28-day flexural strength decreased by 30%. Increasing LP replacement reduced drying and autogenous shrinkage, with a 29% shrinkage reduction at 20% LP replacement. Moreover, UHPC mixtures with GGBFS exhibited lower shrinkage compared to those without GGBFS for all LP replacements up to 20%. For evaluating the sustainability of UHPC mixtures, the cement composition index (CCI) and clinker to cement ratio (CCR) were determined. For 20% LP replacement with 25% GGBFS, CCI was 3.6 and the CCR was 0.5, 38% decrease from the global clinker to cement ratio. Overall, 20% LP replacement UHPC mixtures with and without GGBFS can produce UHPC class performance and reduce the environmental impact.
      번역하기

      While ultra-high performance concrete (UHPC) offers numerous advantages, it also presents specific challenges, primarily due to its high cost and excessive cement content, which can pose sustainability concerns. To address this challenge, this study a...

      While ultra-high performance concrete (UHPC) offers numerous advantages, it also presents specific challenges, primarily due to its high cost and excessive cement content, which can pose sustainability concerns. To address this challenge, this study aims to develop cost-effective and sustainable UHPC mixtures by incorporating ground granulated blast furnace slag (GGBFS) and limestone powder (LP) as partial replacements for portland cement. Eight fiber-reinforced UHPC mixtures were investigated, with a water-to-cementitious materials (w/cm) ratio of 0.15. In four of the UHPC mixtures, 25% of the cement was replaced with GGBFS, and further, LP was added as a mineral filler, partially substituting up to 20% of the cement. In the remaining four mixtures, cement was replaced with only LP up to 20% (without GGBFS). The 28-day compressive strength of the UHPC mixture with 25% GGBFS and 20% LP was 149 MPa, 3.50% lower than the mixture without GGBFS. Its 28-day flexural strength decreased by 30%. Increasing LP replacement reduced drying and autogenous shrinkage, with a 29% shrinkage reduction at 20% LP replacement. Moreover, UHPC mixtures with GGBFS exhibited lower shrinkage compared to those without GGBFS for all LP replacements up to 20%. For evaluating the sustainability of UHPC mixtures, the cement composition index (CCI) and clinker to cement ratio (CCR) were determined. For 20% LP replacement with 25% GGBFS, CCI was 3.6 and the CCR was 0.5, 38% decrease from the global clinker to cement ratio. Overall, 20% LP replacement UHPC mixtures with and without GGBFS can produce UHPC class performance and reduce the environmental impact.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼