RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      2단계 하이브리드 주가 예측 모델:공적분 검정과 인공 신경망 = A Two-Phase Hybrid Stock Price Forecasting Model:Cointegration Tests and Artificial Neural Networks

      한글로보기

      https://www.riss.kr/link?id=A103973860

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this research, we proposed a two-phase hybrid stock price forecasting model with cointegration tests and artificial neural networks. Using not only the related stocks to the target stock but also the past information as input features in neural networks, the new model showed an improved performance in forecasting than that of the usual neural networks. Firstly in order to extract stocks which have long run relationships with the target stock, we made use of Johansen's cointegration test. In stock market, some stocks are apt to vary similarly and these phenomenon can be very informative to forecast the target stock. Johansen's cointegration test provides whether variables are related and whether the relationship is statistically significant. Secondly, we learned the model which includes lagged variables of the target and related stocks in addition to other characteristics of them. Although former research usually did not incorporate those variables, it is well known that most economic time series data are depend on its past value. Also, it is common in econometric literatures to consider lagged values as dependent variables. We implemented a price direction forecasting system for KOSPI index to examine the performance of the proposed model. As the result, our model had 11.29% higher forecasting accuracy on average than the model learned without cointegration test and also showed 10.59% higher on average than the model which randomly selected stocks to make the size of the feature set same as that of the proposed model.
      번역하기

      In this research, we proposed a two-phase hybrid stock price forecasting model with cointegration tests and artificial neural networks. Using not only the related stocks to the target stock but also the past information as input features in neural net...

      In this research, we proposed a two-phase hybrid stock price forecasting model with cointegration tests and artificial neural networks. Using not only the related stocks to the target stock but also the past information as input features in neural networks, the new model showed an improved performance in forecasting than that of the usual neural networks. Firstly in order to extract stocks which have long run relationships with the target stock, we made use of Johansen's cointegration test. In stock market, some stocks are apt to vary similarly and these phenomenon can be very informative to forecast the target stock. Johansen's cointegration test provides whether variables are related and whether the relationship is statistically significant. Secondly, we learned the model which includes lagged variables of the target and related stocks in addition to other characteristics of them. Although former research usually did not incorporate those variables, it is well known that most economic time series data are depend on its past value. Also, it is common in econometric literatures to consider lagged values as dependent variables. We implemented a price direction forecasting system for KOSPI index to examine the performance of the proposed model. As the result, our model had 11.29% higher forecasting accuracy on average than the model learned without cointegration test and also showed 10.59% higher on average than the model which randomly selected stocks to make the size of the feature set same as that of the proposed model.

      더보기

      참고문헌 (Reference)

      1 이상원, "주가 예측을 위한 최적 인공신경망 모형 선택에 관한 연구" 2002

      2 김유섭, "다증 에이전트 Q-학습 구조에 기반한 주식 매매 시스템의 최적화" 11-B (11-B): 207-212, 2004

      3 한국투자증권, "http://www.truefruend.com" 2007

      4 Koscom, "http://www.koscom.co.kr" 2007

      5 "Understanding spurious regressions in Econometrics Journal of Econometrics" 311-340, 1986

      6 Kendall S. M, "Time Series" Oxford 1997

      7 Fan A, "Stock Selection Using Support Vector Machines" 1973-1983, 2001

      8 "Statistical Analysis of Cointegration Vectors Journal of Economic Dynamics and Control Vol" 231-254, 1988

      9 and Newbold, "Spurious regressions in econometrics Journal of Econometrics" 111-120, 1974

      10 Ghosn J, "Multi-Task Learning for Stock Selection" The MIT Press 1997

      1 이상원, "주가 예측을 위한 최적 인공신경망 모형 선택에 관한 연구" 2002

      2 김유섭, "다증 에이전트 Q-학습 구조에 기반한 주식 매매 시스템의 최적화" 11-B (11-B): 207-212, 2004

      3 한국투자증권, "http://www.truefruend.com" 2007

      4 Koscom, "http://www.koscom.co.kr" 2007

      5 "Understanding spurious regressions in Econometrics Journal of Econometrics" 311-340, 1986

      6 Kendall S. M, "Time Series" Oxford 1997

      7 Fan A, "Stock Selection Using Support Vector Machines" 1973-1983, 2001

      8 "Statistical Analysis of Cointegration Vectors Journal of Economic Dynamics and Control Vol" 231-254, 1988

      9 and Newbold, "Spurious regressions in econometrics Journal of Econometrics" 111-120, 1974

      10 Ghosn J, "Multi-Task Learning for Stock Selection" The MIT Press 1997

      11 Mitchell T, "Machine Learning" McGraw Hill 1997

      12 Dempster M. A. H, "Computational Learning Techniques for Intraday FX Trading Using Popular Technical Indicators" 12 (12): 744-754, 2001

      13 Saad E. W, "Comparative Study of Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks" 9 (9): 1456-, 1998

      14 Kim S. D, "A Two-Phase Stock Trading System Using Distributional Differences" 143-152, 2002

      15 Malkiel B. G, "A Random Walk Down Wall Street" Norton 1996

      16 Armano G, "A Hybrid Genetic-Neural Architecture for Stock Indexes Forecasting" 170 (170): 3-33, 2005

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼