RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Polymer‐Based Module for NAD+ Regeneration with Visible Light

      한글로보기

      https://www.riss.kr/link?id=O117667427

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The regeneration of enzymatic cofactors by cell‐free synthetic modules is a key step towards producing a purely synthetic cell. Herein, we demonstrate the regeneration of the enzyme cofactor NAD+ by photo‐oxidation of NADH under visible‐light irradiation by using metal‐free conjugated polymer nanoparticles. Encapsulation of the light‐active nanoparticles in the lumen of polymeric vesicles produced a fully organic module able to regenerate NAD+ in an enzyme‐free system. The polymer compartment conferred physical and chemical autonomy to the module, allowing the regeneration of NAD+ to occur efficiently, even in harsh chemical environments. Moreover, we show that regeneration of NAD+ by the photocatalyst nanoparticles can oxidize a model substrate, in conjunction with the enzyme glycerol dehydrogenase. To ensure the longevity of the enzyme, we immobilized it within a protective silica matrix; this yielded enzymatic silica nanoparticles with enhanced long‐term performance and compatibility with the NAD+‐regeneration system.
      One way and another: A polymer‐based module can regenerate nicotinamide adenine dinucleotide (NAD+) coenzyme by light‐triggered photocatalysis. The module allows opposite redox reactions to take place inside and outside the compartment simultaneously.
      번역하기

      The regeneration of enzymatic cofactors by cell‐free synthetic modules is a key step towards producing a purely synthetic cell. Herein, we demonstrate the regeneration of the enzyme cofactor NAD+ by photo‐oxidation of NADH under visible‐light ir...

      The regeneration of enzymatic cofactors by cell‐free synthetic modules is a key step towards producing a purely synthetic cell. Herein, we demonstrate the regeneration of the enzyme cofactor NAD+ by photo‐oxidation of NADH under visible‐light irradiation by using metal‐free conjugated polymer nanoparticles. Encapsulation of the light‐active nanoparticles in the lumen of polymeric vesicles produced a fully organic module able to regenerate NAD+ in an enzyme‐free system. The polymer compartment conferred physical and chemical autonomy to the module, allowing the regeneration of NAD+ to occur efficiently, even in harsh chemical environments. Moreover, we show that regeneration of NAD+ by the photocatalyst nanoparticles can oxidize a model substrate, in conjunction with the enzyme glycerol dehydrogenase. To ensure the longevity of the enzyme, we immobilized it within a protective silica matrix; this yielded enzymatic silica nanoparticles with enhanced long‐term performance and compatibility with the NAD+‐regeneration system.
      One way and another: A polymer‐based module can regenerate nicotinamide adenine dinucleotide (NAD+) coenzyme by light‐triggered photocatalysis. The module allows opposite redox reactions to take place inside and outside the compartment simultaneously.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼