RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법

      한글로보기

      https://www.riss.kr/link?id=A100199352

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and ...

      In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Methods
      • 3. Results
      • 4. Conclusion
      • Abstract
      • 1. Introduction
      • 2. Methods
      • 3. Results
      • 4. Conclusion
      • 참고문헌
      더보기

      참고문헌 (Reference)

      1 Ren, X., "ellipsoidFN : a tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions" 41 (41): e53-e53, 2013

      2 Hall, M., "The weka data mining software : an update" 11 (11): 10-18, 2009

      3 Toregas, C., "The location of emergency service facilities" 19 (19): 1363-1373, 1971

      4 Ayers, K. L., "SNP selection in genome-wide and candidate gene studies via penalized logistic regression" 34 (34): 879-891, 2010

      5 Zhang, X., "Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data" 7 (7): 197-, 2006

      6 Alexe, G., "Pattern-based feature selections in genomics and proteomics" 148 : 189-201, 2006

      7 Alexe, G., "Ovarian cancer detection by logical analysis of proteomic data" 4 : 766-783, 2004

      8 Ding, C., "Minimum redundancy feature selection from microarray gene expression data" 3 (3): 185-205, 2005

      9 Baralis, E., "Maximum number of genes for microarray feature selection" 2008

      10 Apiletti, D., "MaskedPainter: Feature selection for microarray data analysis" 717-737, 2012

      1 Ren, X., "ellipsoidFN : a tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions" 41 (41): e53-e53, 2013

      2 Hall, M., "The weka data mining software : an update" 11 (11): 10-18, 2009

      3 Toregas, C., "The location of emergency service facilities" 19 (19): 1363-1373, 1971

      4 Ayers, K. L., "SNP selection in genome-wide and candidate gene studies via penalized logistic regression" 34 (34): 879-891, 2010

      5 Zhang, X., "Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data" 7 (7): 197-, 2006

      6 Alexe, G., "Pattern-based feature selections in genomics and proteomics" 148 : 189-201, 2006

      7 Alexe, G., "Ovarian cancer detection by logical analysis of proteomic data" 4 : 766-783, 2004

      8 Ding, C., "Minimum redundancy feature selection from microarray gene expression data" 3 (3): 185-205, 2005

      9 Baralis, E., "Maximum number of genes for microarray feature selection" 2008

      10 Apiletti, D., "MaskedPainter: Feature selection for microarray data analysis" 717-737, 2012

      11 Long, N, "Machine learning classification procedure for selecting SNPs in genomic selection : application to early mortality in broilers" 124 (124): 377-389, 2007

      12 Alexe, G., "Logical analysis of diffuse large B-cell lymphomas" 34 : 235-267, 2005

      13 Bertolazzi, P., "Logic classification and feature selection for biomedical data" 889-899, 2008

      14 Zhang, H. H., "Gene selection using support vector machines with non-convex penalty" 22 (22): 88-95, 2006

      15 Li, L., "Gene selection for sample classification based on gene expression data :study of sensitivity to choice of parameters of the ga/knn method" 17 (17): 1131-1142, 2001

      16 Guyon, I., "Gene selection for cancer classification using support vector machines" 46 (46): 389-422, 2002

      17 Dʹiaz-Uriarte, R, "Gene selection and classification of microarray data using random forest" 7 (7): 3-, 2006

      18 Model, F., "Feature selection for DNA methylation based cancer classification" 17 (17): s157-s164, 2001

      19 Alexe, G., "Breast cancer prognosis by combinatorial analysis of gene expression data" 8 (8): r41-, 2006

      20 Boros, E., "An implementation of logical analysis of data" 12 (12): 292-306, 2000

      21 Thomas, J. G., "An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles" 11 (11): 1227-1236, 2001

      22 Rubin, J., "A technique for the solution of massive set covering problems, with application to airline crew scheduling" 7 (7): 34-48, 1973

      23 Saeys, Y., "A review of feature selection techniques in bioinformatics" 23 (23): 2507-2517, 2007

      24 Wang, Z., "A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve" 23 (23): 2788-2794, 2007

      25 Chvatal, V., "A greedy heuristic for the setcovering problem" 4 (4): 233-235, 1979

      26 Zhuang, J., "A comparison of feature selection and classification methods in DNA methylation studies using the illumina infinium platform" 13 (13): 59-, 2012

      27 Liu, H., "A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns" 51-60, 2002

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.66 0.66 0.69
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.69 0.66 1.157 0.2
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼