1 Lustig , M., "Compressed sensing MRI .", 25 ( 2 ) : p. 72-82 ., 2008
2 Graves , M. ,, "Magnetic resonance angiography", 70 ( 829 ) : p. 6-28 ., 1997
3 He , K. , et al, "Deep residual learning for image recognition", 2016
4 Song , P., "HYDRA : Hybrid deep magnetic resonance fingerprinting", 46 ( 11 ) : p. 4951-4969 ., 2019
5 Zhang , K. , et al, "Learning deep CNN denoiser prior for image restoration", 2017
6 Zhu , B. ,, "Image reconstruction by domain-transform manifold learning", 555 ( 7697 ) : p. 487-492 ., 2018
7 Knoll , F., "Second order total generalized variation ( TGV ) for MRI .", 65 ( 2 ) : p. 480-491 ., 2011
8 Xie , S. , et al, "Aggregated residual transformations for deep neural networks", 2017
9 Stikov , N., "On the accuracy of T1 mapping : searching for common ground .", 73 ( 2 ) : p. 514-522 ., 2015
10 Liu , G. , et al ., "Image inpainting for irregular holes using partial convolutions .", 2018
1 Lustig , M., "Compressed sensing MRI .", 25 ( 2 ) : p. 72-82 ., 2008
2 Graves , M. ,, "Magnetic resonance angiography", 70 ( 829 ) : p. 6-28 ., 1997
3 He , K. , et al, "Deep residual learning for image recognition", 2016
4 Song , P., "HYDRA : Hybrid deep magnetic resonance fingerprinting", 46 ( 11 ) : p. 4951-4969 ., 2019
5 Zhang , K. , et al, "Learning deep CNN denoiser prior for image restoration", 2017
6 Zhu , B. ,, "Image reconstruction by domain-transform manifold learning", 555 ( 7697 ) : p. 487-492 ., 2018
7 Knoll , F., "Second order total generalized variation ( TGV ) for MRI .", 65 ( 2 ) : p. 480-491 ., 2011
8 Xie , S. , et al, "Aggregated residual transformations for deep neural networks", 2017
9 Stikov , N., "On the accuracy of T1 mapping : searching for common ground .", 73 ( 2 ) : p. 514-522 ., 2015
10 Liu , G. , et al ., "Image inpainting for irregular holes using partial convolutions .", 2018
11 Zhang , T., "Coil compression for accelerated imaging with Cartesian sampling .", 69 ( 2 ) : p. 571-582 ., 2013
12 Lim , B. , et al, "Enhanced deep residual networks for single image superresolution .", 2017
13 Jung , W. ,, "Exploring linearity of deep neural network trained QSM : QSMnet+ .", 211 : p. 116619 ., 2020
14 Yang , Y., "ADMM-CSNet : A deep learning approach for image compressive sensing .", 42 ( 3 ) : p. 521-538 ., 2018
15 Griswold , M.A. ,, "Generalized autocalibrating partially parallel acquisitions ( GRAPPA )", 47 ( 6 ) : p. 1202-1210 ., 2002
16 Yoon , J. ,, "Quantitative susceptibility mapping using deep neural network : QSMnet", 179 : p. 199-206 ., 2018
17 Mardani , M., "Deep generative adversarial neural networks for compressive sensing MRI .", 38 ( 1 ) : p. 167-179 ., 2018
18 Zhao , B., "Accelerated MR parameter mapping with low ? rank and sparsity constraints .", 74 ( 2 ) : p. 489- 498 ., 2015
19 Wang , Z., "Image quality assessment : from error visibility to structural similarity .", 13 ( 4 ) : p. 600-612 ., 2004
20 Hammernik , K., "Learning a variational network for reconstruction of accelerated MRI data .", 79 ( 6 ) : p. 3055-3071 ., 2018
21 Lee , D., "Deep residual learning for accelerated MRI using magnitude and phase networks .", 65 ( 9 ) : p. 1985-1995 ., 2018
22 Zhang , K., "Beyond a gaussian denoiser : Residual learning of deep cnn for image denoising .", 26 ( 7 ) : p. 3142-3155 ., 2017
23 Duan , J. , et al ., "VS-Net : Variable splitting network for accelerated parallel MRI reconstruction .", 2019
24 Schlemper , J., "A deep cascade of convolutional neural networks for dynamic MR image reconstruction .", 37 ( 2 ) : p. 491-503 ., 2017
25 Keenan , K.E., "Recommendations towards standards for quantitative MRI ( qMRI ) and outstanding needs .", 49 ( 7 ) : p. e26 ., 2019
26 Maier , O., "Rapid T1 quantification from high resolution 3D data with model ? based reconstruction .", 81 ( 3 ) : p. 2072-2089 ., 2019
27 K ? stner , T., "Retrospective correction of motion ? affected MR images using deep learning frameworks .", 82 ( 4 ) : p. 1527-1540 ., 2019
28 He , K. , et al ., "Delving deep into rectifiers : Surpassing human-level performance on imagenet classification", 2015
29 Cheng , D. , et al, "Person re-identification by multi-channel parts-based cnn with improved triplet loss function", 2016
30 Eo , T., "Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction .", 63 : p. 101689 ., 2020
31 Shin , P.J., "Calibrationless parallel imaging reconstruction based on structured low ? rank matrix completion", 72 ( 4 ) : p. 959-970 ., 2014
32 Chavhan , G.B., "Principles , techniques , and applications of T2 * -based MR imaging and its special applications", 29 ( 5 ) : p. 1433-1449 ., 2009
33 Gibbs , G.F. ,, "Improved image quality of intracranial aneurysms : 3.0- T versus 1.5-T time-of-flight MR angiography", 25 ( 1 ) : p. 84-87 ., 2004
34 Yang , G., "DAGAN : Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction .", 37 ( 6 ) : p. 1310-1321 ., 2017
35 Baudrexel , S., "Quantitative mapping of T1 and T2 * discloses nigral and brainstem pathology in early Parkinson 's disease", 51 ( 2 ) : p. 512-520 ., 2010
36 Eo , T. KIKI ?, "net : cross ? domain convolutional neural networks for reconstructing undersampled magnetic resonance images .", 80 ( 5 ) : p. 2188-2201 ., 2018
37 Oelerich , M. ,, "Intracranial vascular stenosis and occlusion : comparison of 3D time-of-flight and 3D phase-contrast MR angiography", 40 ( 9 ) : p. 567-573 ., 1998
38 Uecker , M., "Image reconstruction by regularized nonlinear inversion ? joint estimation of coil sensitivities and image content .", 60 ( 3 ) : p. 674-682 ., 2008
39 Murphy , M. ,, "Fast l1-SPIRiT compressed sensing parallel imaging MRI : scalable parallel implementation and clinically feasible runtime", 31 ( 6 ) : p. 1250-1262 ., 2012
40 Jun , Y., "Parallel imaging in time ? of ? flight magnetic resonance angiography using deep multistream convolutional neural networks .", 81 ( 6 ) : p. 3840-3853 ., 2019
41 Huang , C., "T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing .", 67 ( 5 ) : p. 1355-1366 ., 2012
42 Sumpf , T.J., "Fast T2 mapping with improved accuracy using undersampled spin-echo MRI and model-based reconstructions with a generating function .", 33 ( 12 ) : p. 2213-2222 ., 2014
43 Fushimi , Y., "Compressed sensing 3-dimensional time-of-flight magnetic resonance angiography for cerebral aneurysms : optimization and evaluation .", 51 ( 4 ) : p. 228-235 ., 2016
44 Weber , J. ,, "MR angiography at 3 Tesla to assess proximal internal carotid artery stenoses : contrast-enhanced or 3D time-of-flight MR angiography ?", 25 ( 1 ) : p. 41-48 ., 2015
45 Zhang , T., "Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction .", 40 ( 1 ) : p. 13- 25 ., 2014
46 Wang , X., "Model-based myocardial T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH cardiovascular magnetic resonance .", 21 ( 1 ) : p. 1-11 ., 2019
47 Lescher , S., "Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab : earlier detection of tumor progression compared to conventional MRI .", 57 ( 1 ) : p. 11-20 ., 2015
48 Yamamoto , T., "Time-of-flight magnetic resonance angiography with sparse undersampling and iterative reconstruction : comparison with conventional parallel imaging for accelerated imaging", 51 ( 6 ) : p. 372-378 ., 2016
49 Kramer , J.H. ,, "Dynamic and static magnetic resonance angiography of the supra-aortic vessels at 3.0 T : intraindividual comparison of gadobutrol , gadobenate dimeglumine , and gadoterate meglumine at equimolar dose .", 48 ( 3 ) : p. 121-128 ., 2013