RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      CdS Nanoribbon‐Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping

      한글로보기

      https://www.riss.kr/link?id=O120352734

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Traditional metal–insulator–metal (MIM)‐based resistive switches (RS) possess a high operating current, which can be read directly without an amplifier yet will inevitably produce large power consumption. Rational control of the energy consumption of RS devices is surely desirable to achieve the energy‐efficient purpose in a variety of practical applications. Here a surface charge transfer doping (SCTD) strategy is reported to manipulate the operating current as well as power consumption of the RS devices by using doped CdS nanoribbon (NR) as a rheostat. By controlling the concentration of surface dopant of MoO3, the conductivity of doped CdS NR can be tuned in a wide range of nine orders of magnitude, showing the transition from insulator to semiconductor and to conductor. On the basis of CdS NRs with controllable conductivity, the as‐fabricated RS devices exhibit an ultrawidely tunable‐power consumption from 1 nW, the lowest value reported so far, to 0.1 mW, which is close to the typical values of MIM‐based RS devices. In view of the high controllability of the SCTD method, this work opens up unique opportunities for future energy‐efficient, performance‐tunable, and multifunctional RS devices based on semiconductor nanostructures.
      Ultrawidely power‐tunable resistive switching (RS) devices based on CdS nanoribbons are constructed via a surface charge transfer doping method. The doped CdS nanoribbons can serve as a rheostat in RS devices to adjust the power consumption from 1 nW to 0.1 mW, thus opening up unique opportunities for future energy‐efficient, performance‐tunable, and multifunctional RS devices based on semiconductor nanostructures.
      번역하기

      Traditional metal–insulator–metal (MIM)‐based resistive switches (RS) possess a high operating current, which can be read directly without an amplifier yet will inevitably produce large power consumption. Rational control of the energy consumpti...

      Traditional metal–insulator–metal (MIM)‐based resistive switches (RS) possess a high operating current, which can be read directly without an amplifier yet will inevitably produce large power consumption. Rational control of the energy consumption of RS devices is surely desirable to achieve the energy‐efficient purpose in a variety of practical applications. Here a surface charge transfer doping (SCTD) strategy is reported to manipulate the operating current as well as power consumption of the RS devices by using doped CdS nanoribbon (NR) as a rheostat. By controlling the concentration of surface dopant of MoO3, the conductivity of doped CdS NR can be tuned in a wide range of nine orders of magnitude, showing the transition from insulator to semiconductor and to conductor. On the basis of CdS NRs with controllable conductivity, the as‐fabricated RS devices exhibit an ultrawidely tunable‐power consumption from 1 nW, the lowest value reported so far, to 0.1 mW, which is close to the typical values of MIM‐based RS devices. In view of the high controllability of the SCTD method, this work opens up unique opportunities for future energy‐efficient, performance‐tunable, and multifunctional RS devices based on semiconductor nanostructures.
      Ultrawidely power‐tunable resistive switching (RS) devices based on CdS nanoribbons are constructed via a surface charge transfer doping method. The doped CdS nanoribbons can serve as a rheostat in RS devices to adjust the power consumption from 1 nW to 0.1 mW, thus opening up unique opportunities for future energy‐efficient, performance‐tunable, and multifunctional RS devices based on semiconductor nanostructures.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼