RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Deep Neural Network 기반의 차량 주행 경로 예측

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In regard to the vehicle safety services, vehicle trajectory prediction is one of the key technologies to estimate when and where the vehicle could be located. The development of the vehicle trajectory prediction algorithms using traditional physics-b...

      In regard to the vehicle safety services, vehicle trajectory prediction is one of the key technologies to estimate when and where the vehicle could be located. The development of the vehicle trajectory prediction algorithms using traditional physics-based models, such as kinematic and dynamic models, often required building a system model with complex equations, as well as gathering sensor noise statistics. In this paper, we proposed a vehicle trajectory prediction algorithm based on a deep neural network(DNN). The input data to the DNN were the driving status information defined in SAE J2735 basic safety message(BSM), while the output layer consisted of longitudinal and lateral trajectory predictions. The adaptive moment estimation(Adam) was used to enhance the learning speed. Through simulations, we compared the performance of the DNN-based approach with that of the traditional approach, and the results showed that the proposed method resulted in improved accuracy and precision of the vehicle trajectory prediction.

      더보기

      참고문헌 (Reference)

      1 강현구, "충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발" 한국자동차공학회 21 (21): 81-86, 2013

      2 최희재, "정적 장애물 회피를 위한 경로 계획: ADAM III" 한국자동차공학회 22 (22): 241-249, 2014

      3 National Highway Traffic Safety Administration, "Vehicle-to-Vehicle Communication Technology for Light Vehicles, Preliminary Regulatory Impact Analysis, FMVSS, No. 150"

      4 D. Yudin, "Vehicle Recognition and its Trajectory Registration on the Image Sequence using Deep Convolutional Neural Network" 435-441, 2017

      5 S. H. JEONG, "TECHNOLOGY ANALYSIS AND LOW-COST DESIGN OF AUTOMOTIVE RADAR FOR ADAPTIVE CRUISE CONTROL SYSTEM" 한국자동차공학회 13 (13): 1133-1140, 2012

      6 "SAE International Surface Vehicle Standard, Dedicated Short Range Communications (DSRC) Message Set Dictionary, SAE Standard J2735"

      7 "Road Design Manual" 2012

      8 "PreScan: Simulation of ADAS and Active Safety" TASS International

      9 J. Walker, "Patch to the Future: Unsupervised Visual Prediction" 3302-3309, 2014

      10 D. Jeong, "Long-Term Prediction of Vehicle Trajectory Based on a Deep Neural Network" 726-728, 2017

      1 강현구, "충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발" 한국자동차공학회 21 (21): 81-86, 2013

      2 최희재, "정적 장애물 회피를 위한 경로 계획: ADAM III" 한국자동차공학회 22 (22): 241-249, 2014

      3 National Highway Traffic Safety Administration, "Vehicle-to-Vehicle Communication Technology for Light Vehicles, Preliminary Regulatory Impact Analysis, FMVSS, No. 150"

      4 D. Yudin, "Vehicle Recognition and its Trajectory Registration on the Image Sequence using Deep Convolutional Neural Network" 435-441, 2017

      5 S. H. JEONG, "TECHNOLOGY ANALYSIS AND LOW-COST DESIGN OF AUTOMOTIVE RADAR FOR ADAPTIVE CRUISE CONTROL SYSTEM" 한국자동차공학회 13 (13): 1133-1140, 2012

      6 "SAE International Surface Vehicle Standard, Dedicated Short Range Communications (DSRC) Message Set Dictionary, SAE Standard J2735"

      7 "Road Design Manual" 2012

      8 "PreScan: Simulation of ADAS and Active Safety" TASS International

      9 J. Walker, "Patch to the Future: Unsupervised Visual Prediction" 3302-3309, 2014

      10 D. Jeong, "Long-Term Prediction of Vehicle Trajectory Based on a Deep Neural Network" 726-728, 2017

      11 D. E. Rumelhart, "Learning Representations by Backpropagating Errors" 323 (323): 533-536, 1986

      12 D. Vasquez, "Growing Hidden Markov Models: An Incremental Tool for Learning and Predicting Human and Vehicle Motion" 28 (28): 1486-1506, 2009

      13 H. -J. Kang, "Forward Collision Damage Mitigation System" 33 (33): 44-51, 2011

      14 C. H. JANG, "DESIGN FACTOR OPTIMIZATION OF 3D FLASH LIDAR SENSOR BASED ON GEOMETRICAL MODEL FOR AUTOMATED VEHICLE AND ADVANCED DRIVER ASSISTANCE SYSTEM APPLICATIONS" 한국자동차공학회 18 (18): 147-156, 2017

      15 P. Lytrivis, "An Advanced Cooperative Path Prediction Algorithm for Safety Applications in Vehicular Networks" 12 (12): 669-679, 2011

      16 D. Kingma, "Adam: A Method for Stochastic Optimization" 2015

      17 "2016 Korea Automobile Testing and Research Institute Annual Report" Korea Transportation Safety Authority 2017

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2018-11-01 평가 SCOPUS 등재 (기타) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.36 0.793 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼