RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Experimental study of effects of wicks and boundary conditions on thermal performance of heat pipes

      한글로보기

      https://www.riss.kr/link?id=A108043363

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The inherent two-phase heat transport of heat pipes (HPs) is progressively being examined for potential uses. These thermal devices are affected by many operating factors, prompting this study to investigate the effects of different types of wicks and...

      The inherent two-phase heat transport of heat pipes (HPs) is progressively being examined for potential uses. These thermal devices are affected by many operating factors, prompting this study to investigate the effects of different types of wicks and working conditions on the time-dependent thermal behavior. Primarily, the effects of different wick performances were investigated under various operating conditions. The resulting surface temperatures depicted in the time to steady performance and the dry-out behavior revealed the conditions to improve the HPs design. The thermal resistance decreased from 0.6 K/W (at 25 W) to 0.05 K/W (at 200 W) by increasing the HP diameter from 6 to 10 mm; these values are relative to those of copper rods, which decrease from 2.70 K/W (at 25 W) to 0.40 K/W (at 200 W). Nonlinear and linear temperature responses were recorded when the HPs diameter and length were varied. Compared to conventional mesh and groove wicks, the composite groovesintered, mesh-sintered, and groove-mesh wicks recorded lower thermal resistance with distinctively faster startup times, lower startup temperatures, better temperature uniformity and less dynamic instability. Tilting the HPs relative to the horizontal position lessens failure tendencies. Usually, dynamic responses are typically first-order under the conditions studied. Hence, proper sizing of HPs and correct wick selection can improve their performance.

      더보기

      참고문헌 (Reference)

      1 Foster Kwame Kholi ; 박재현 ; 손효제 ; Hariharan Kallath ; Michael Klingsporn ; Jason Chetwynd-Chatwin ; 민준기, "저온조건 Fuel-Cooled Oil Cooler의 냉각성능에 대한 예측기법: 실험 및 수치적 연구" 한국전산유체공학회 25 (25): 43-55, 2020

      2 S. -C. Wong, "Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability" 114 : 1045-1053, 2017

      3 S. -C. Wong, "Visualization experiments on the condensation process in heat pipe wicks" 68 : 625-632, 2014

      4 S. -C. Wong, "Visualization experiments on flatplate heat pipes with composite mesh-groove wick at different tilt angles" 123 : 839-847, 2018

      5 J. -H. Liou, "Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes" 53 : 1498-1506, 2010

      6 S. -C. Wong, "Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone" 52 : 154-160, 2012

      7 Y. Li, "Thermal performance of ultra-thin flattened heat pipes with composite wick structure" 102 : 487-499, 2016

      8 N. Putra, "Thermal performance of screen mesh wick heat pipes with nanofluids" 40 : 10-17, 2012

      9 C. Oshman, "Thermal performance of a flat polymer heat pipe heat spreader under high acceleration" 22 : 045018-, 2012

      10 S. Jafari, "Thermal management systems for civil aircraft engines: review, Challenges and Exploring the Future" 8 : 2044-, 2018

      1 Foster Kwame Kholi ; 박재현 ; 손효제 ; Hariharan Kallath ; Michael Klingsporn ; Jason Chetwynd-Chatwin ; 민준기, "저온조건 Fuel-Cooled Oil Cooler의 냉각성능에 대한 예측기법: 실험 및 수치적 연구" 한국전산유체공학회 25 (25): 43-55, 2020

      2 S. -C. Wong, "Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability" 114 : 1045-1053, 2017

      3 S. -C. Wong, "Visualization experiments on the condensation process in heat pipe wicks" 68 : 625-632, 2014

      4 S. -C. Wong, "Visualization experiments on flatplate heat pipes with composite mesh-groove wick at different tilt angles" 123 : 839-847, 2018

      5 J. -H. Liou, "Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes" 53 : 1498-1506, 2010

      6 S. -C. Wong, "Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone" 52 : 154-160, 2012

      7 Y. Li, "Thermal performance of ultra-thin flattened heat pipes with composite wick structure" 102 : 487-499, 2016

      8 N. Putra, "Thermal performance of screen mesh wick heat pipes with nanofluids" 40 : 10-17, 2012

      9 C. Oshman, "Thermal performance of a flat polymer heat pipe heat spreader under high acceleration" 22 : 045018-, 2012

      10 S. Jafari, "Thermal management systems for civil aircraft engines: review, Challenges and Exploring the Future" 8 : 2044-, 2018

      11 M. Vijayakumar, "Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids" 79 : 25-35, 2016

      12 S. Nukiyama, "The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure" 9 : 1419-1433, 1966

      13 J. -S. Chen, "The length and bending angle effects on the cooling performance of flat plate heat pipes" 90 : 848-856, 2015

      14 M. Ha, "Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification" 111 : 91601-, 2017

      15 A. Mucci, "Numerical investigation of flow instability and heat transfer characteristics inside pulsating heat pipes with different numbers of turns" 169 : 120934-, 2021

      16 L. L. Vasiliev, "Micro and miniature heat pipes-electronic component coolers" 28 : 266-273, 2008

      17 P. Nemec, "Mathematical model for heat transfer limitations of heat pipe" 57 : 126-136, 2013

      18 N. N. Babu, "Materials used in heat pipe" 2 : 1469-1478, 2015

      19 A. R. Anand, "Investigations on effect of evaporator length on heat transport of axially grooved ammonia heat pipe" 150 : 1233-1242, 2019

      20 M. G. Mwaba, "Influence of wick characteristics on heat pipe performance" 30 : 489-499, 2006

      21 J. K. Min, "High temperature heat exchanger studies for applications to gas turbines" 46 : 175-, 2009

      22 R. Xu, "Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures" 137 : 31-41, 2019

      23 D. Reay, "Heat Pipes: Theory, Design and Applications" Butterworth-Heinemann 2013

      24 M. Mahdavi, "Experimental study of the thermal characteristics of a heat pipe" 93 : 292-304, 2018

      25 X. L. Cao, "Experimental study of evaporative heat transfer in sintered copper bidispersed wick structures" 16 : 547-552, 2002

      26 T. Semenic, "Experimental study of biporous wicks for high heat flux applications" 52 : 5113-5121, 2009

      27 F. Lefèvre, "Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure" 37 : 95-102, 2012

      28 H. Li, "Experimental investigation on the sintered wick of the antigravity loop-shaped heat pipe" 68 : 689-696, 2015

      29 Y. Tang, "Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera" 34 : 190-196, 2010

      30 Y. Cai, "Experimental investigation on a novel multi-branch heat pipe for multi-heat source electronics" 104 : 467-477, 2017

      31 B. Zhuang, "Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section" 100 : 42-50, 2019

      32 H. Tang, "Experimental investigation of the thermal performance of heat pipes with double-ended heating and middle-cooling" 148 : 1332-1345, 2017

      33 F. K. Kholi, "Experimental investigation of the effects of inclinations and wicks on the thermal behavior of heat pipes for improved thermal applications" 100997-, 2021

      34 Y. Tang, "Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes" 115 : 1020-1030, 2017

      35 F. K. Kholi, "Experimental and numerical analysis of the transient behavior of the oil decongealing process in an aero fuel-cooled oil cooler under lowtemperature conditions" 2021

      36 M. A. Hanlon, "Evaporation heat transfer in sintered porous media" 125 : 644-652, 2003

      37 Y. Li, "Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick" 50 : 342-351, 2013

      38 Y. Tang, "Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices" 66 : 66-76, 2013

      39 S. Wang, "Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe" 31 : 2367-2373, 2011

      40 G. Franchi, "Development of composite wicks for heat pipe performance enhancement" 29 : 873-884, 2008

      41 J. Supowit, "Designer fluid performance and inclination angle effects in a flat grooved heat pipe" 101 : 770-777, 2016

      42 X. Huang, "Design and fabrication of hybrid bimodal wick structure for heat pipe application" 15 : 635-642, 2008

      43 C. Silverstein, "Design and Technology of Heat Pipes for Cooling and Heat Exchange" CRC Press 1992

      44 D. Deng, "Characterization of capillary performance of composite wicks for twophase heat transfer devices" 56 : 283-293, 2013

      45 S. B. Riffat, "Analytical and numerical simulation of the thermal performance of `mini’ gravitational and `micro’ gravitational heat pipes" 22 : 1047-1068, 2002

      46 박재현 ; Foster Kwame Kholi ; Michael Klingsporn ; Jason Chetwynd-Chatwin ; 하만영 ; 민준기, "An improved numerical analysis of the transient oil de-congealing process in a heat exchanger under low temperature conditions" 대한기계학회 35 (35): 391-406, 2021

      47 Foster Kwame Kholi ; Alberto Mucci ; Hariharan Kallath ; 하만영 ; Jason Chetwynd-Chatwin ; 민준기, "An improved correlation to predict the heat transfer in pulsating heat pipes over increased range of fluid-filling ratios and operating inclinations" 대한기계학회 34 (34): 2637-2646, 2020

      48 Y. Wang, "An experimental investigation of heat transfer performance of a flat plate heat pipe with a combined capillary structure" 55 : 1155-1165, 2019

      49 부준홍 ; Soo Yong Park ; Do Hyoung Kim, "An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe" 대한기계학회 19 (19): 1036-1043, 2005

      50 B. Orr, "A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes" 101 : 490-495, 2016

      51 W. Zhou, "A novel ultrathin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices" 180 : 769-783, 2019

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼