RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      적응형 블러 기반 비디오의 수평적 확장 여부 판별 네트워크 = Video classifier with adaptive blur network to determine horizontally extrapolatable video content

      한글로보기

      https://www.riss.kr/link?id=A109160715

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      기존에 존재하는 비디오영역을 가로 혹은 세로로 확장하는 비디오 확장 기술에 대한 수요가 높아지고 있지만, 최신 기술로도 모든 비디오를 성공적으로 확장할 수는 없다. 따라서 비디오 확...

      기존에 존재하는 비디오영역을 가로 혹은 세로로 확장하는 비디오 확장 기술에 대한 수요가 높아지고 있지만, 최신 기술로도 모든 비디오를 성공적으로 확장할 수는 없다. 따라서 비디오 확장을 시도하기 전에 해당 비디오가 잘 확장될 수 있을지판단하는 것이 중요하다. 이를 통해 불필요한 컴퓨팅 자원 낭비를 줄일 수 있기 때문이다. 이 논문은 비디오가 수평 확장에적합한지 판별하는 비디오 분류기를 제안한다. 이 분류기는 광학 흐름과 적응형 가우시안 블러 네트워크를 활용하여 흐름기반 비디오 확장 방식에 적용할 수 있다. 학습을위한 라벨링은유저 테스트 및 정량적 평가를 거쳐 엄격하게 이루어졌다.
      이렇게 라벨링된 데이터셋으로 학습한 결과, 주어진 비디오의 확장 가능성을 분류하는 네트워크를 개발할 수 있었다. 제안된분류기는 광학 흐름과 적응형 가우시안 블러 네트워크를 통해 비디오의 특성을 효과적으로 포착함으로써, 단순히 원본 비디오나 고정된 블러만을 사용하는 경우보다 훨씬 정확한 분류 성능을 보였다. 이 분류기는 향후 다양한 분야에서 활용될 수있으며, 특히 몰입감 있는 시청 경험을위해 장면을자동으로 확장하는 기술과 함께 사용될 수 있을 것으로 기대된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      While the demand for extrapolating video content horizontally or vertically is increasing, even the most advanced techniques cannot successfully extrapolate all videos. Therefore, it is important to determine if a given video can be well extrapolated ...

      While the demand for extrapolating video content horizontally or vertically is increasing, even the most advanced techniques cannot successfully extrapolate all videos. Therefore, it is important to determine if a given video can be well extrapolated before attempting the actual extrapolation. This can help avoid wasting computing resources. This paper proposes a video classifier that can identify if a video is suitable for horizontal extrapolation. The classifier utilizes optical flow and an adaptive Gaussian blur network, which can be applied to flow-based video extrapolation methods. The labeling for training was rigorously conducted through user tests and quantitative evaluations. As a result of learning from this labeled dataset, a network was developed to determine the extrapolation capability of a given video. The proposed classifier achieved much more accurate classification performance than methods that simply use the original video or fixed blur alone by effectively capturing the characteristics of the video through optical flow and adaptive Gaussian blur network. This classifier can be utilized in various fields in conjunction with automatic video extrapolation techniques for immersive viewing experiences.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼