RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Modeling User Trajectory Similarity for Next Location Prediction

      한글로보기

      https://www.riss.kr/link?id=A108349065

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      With the rapid development of social media, users' next location prediction has become an important research direction, which can provide personalized travel suggestions for users. However, existing methods ignore the semantic relationship between users' historical and current trajectories. This paper proposes a new method for predicting the user's next location to solve this problem. We first process the user POI data as trajectory data, use the attention mechanism to extract similar features of the user's historical trajectories, and then combine them with the current trajectory features to obtain the user's next location recommendation. The experimental results show that our proposed model performs satisfactorily on a real dataset.
      번역하기

      With the rapid development of social media, users' next location prediction has become an important research direction, which can provide personalized travel suggestions for users. However, existing methods ignore the semantic relationship between use...

      With the rapid development of social media, users' next location prediction has become an important research direction, which can provide personalized travel suggestions for users. However, existing methods ignore the semantic relationship between users' historical and current trajectories. This paper proposes a new method for predicting the user's next location to solve this problem. We first process the user POI data as trajectory data, use the attention mechanism to extract similar features of the user's historical trajectories, and then combine them with the current trajectory features to obtain the user's next location recommendation. The experimental results show that our proposed model performs satisfactorily on a real dataset.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. INTRODUCTION
      • II. PROBLEM FORMULATION
      • A. Definition
      • B. Problem
      • Abstract
      • I. INTRODUCTION
      • II. PROBLEM FORMULATION
      • A. Definition
      • B. Problem
      • III. THE PROPOSED MODEL
      • A. Embedding
      • B. Trajectory Feature Extraction Module
      • C. Trajectory Similarity Weighting Module
      • D. Prediction module
      • IV. EXPERIMENTAL RESULT
      • V. CONCLUSION
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼