RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Mars Initial Reference Ionosphere (MIRI) Model: Updates and Validations Using MAVEN, MEX, and MRO Data Sets

      한글로보기

      https://www.riss.kr/link?id=O119566698

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Mars Initial Reference Ionosphere (MIRI) model is a semiempirical formulation designed to provide climatological estimates of key parameters of the Martian ionosphere. For the new MIRI‐2018 version, an expanded database is used from the Mars Express/Mars Advanced Radar for Subsurface and Ionosphere Sounding/Active Ionospheric Sounding (MEX/MARSIS/AIS) instrument, consisting of 215,818 values of maximum electron density of the M2‐layer (NmM2) from the years 2005–2015. These data are organized by photochemical‐equilibrium equations to obtain a functional dependence of NmM2 upon solar drivers (flux and solar zenith angle). The resulting peak density is used to calibrate normalized electron density profiles [Ne (h)] derived from theory and an empirical model. The MIRI‐2018 thus provides estimates of NmM2, Ne (h), and total electron content (TEC) for any date past or future. Validation using Mars Atmosphere and Volatile EvolutioN (MAVEN)'s new radio occultation science experiment (ROSE) was successful for NmM2 values, but MIRI was found to overestimate TEC values. The validation failure for TEC was traced to overestimates of plasma at low altitudes (M1 layer). A separate module for TEC was derived using 126,055 values from the Mars Reconnaissance Orbiter/SHAllow RADar (MRO/SHARAD) TEC database from 2006 to 2014. Validation of this new TEC module with ROSE data was successful. Future improvements to MIRI‐2018 require new ways to characterize the bottomside ionosphere's contribution to the TEC integral for midday (low solar zenith angle) conditions. This requires new simulation studies of secondary ionization rates by photoelectrons produced via the primary X‐ray ionization process for the M1 layer.


      Scientific understanding of complex ionospheric patterns and processes at Mars requires a baseline specification model
      New methods of daily predictions for maximum electron density and total electron content are derived and tested using new data sets
      Validation issues for midday conditions require more accurate theoretical calculations of X‐ray produced secondary ionization rates
      번역하기

      The Mars Initial Reference Ionosphere (MIRI) model is a semiempirical formulation designed to provide climatological estimates of key parameters of the Martian ionosphere. For the new MIRI‐2018 version, an expanded database is used from the Mars Exp...

      The Mars Initial Reference Ionosphere (MIRI) model is a semiempirical formulation designed to provide climatological estimates of key parameters of the Martian ionosphere. For the new MIRI‐2018 version, an expanded database is used from the Mars Express/Mars Advanced Radar for Subsurface and Ionosphere Sounding/Active Ionospheric Sounding (MEX/MARSIS/AIS) instrument, consisting of 215,818 values of maximum electron density of the M2‐layer (NmM2) from the years 2005–2015. These data are organized by photochemical‐equilibrium equations to obtain a functional dependence of NmM2 upon solar drivers (flux and solar zenith angle). The resulting peak density is used to calibrate normalized electron density profiles [Ne (h)] derived from theory and an empirical model. The MIRI‐2018 thus provides estimates of NmM2, Ne (h), and total electron content (TEC) for any date past or future. Validation using Mars Atmosphere and Volatile EvolutioN (MAVEN)'s new radio occultation science experiment (ROSE) was successful for NmM2 values, but MIRI was found to overestimate TEC values. The validation failure for TEC was traced to overestimates of plasma at low altitudes (M1 layer). A separate module for TEC was derived using 126,055 values from the Mars Reconnaissance Orbiter/SHAllow RADar (MRO/SHARAD) TEC database from 2006 to 2014. Validation of this new TEC module with ROSE data was successful. Future improvements to MIRI‐2018 require new ways to characterize the bottomside ionosphere's contribution to the TEC integral for midday (low solar zenith angle) conditions. This requires new simulation studies of secondary ionization rates by photoelectrons produced via the primary X‐ray ionization process for the M1 layer.


      Scientific understanding of complex ionospheric patterns and processes at Mars requires a baseline specification model
      New methods of daily predictions for maximum electron density and total electron content are derived and tested using new data sets
      Validation issues for midday conditions require more accurate theoretical calculations of X‐ray produced secondary ionization rates

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼