In this study, the fabrication of $Al_2O_3$/5vol.%Cu nanocomposite and its mechanical property were discussed. The nanocomposite powders were produced by high energy ball milling of $Al_2O_3$ and Cu elemental powders. The ball-milled powders were sint...
In this study, the fabrication of $Al_2O_3$/5vol.%Cu nanocomposite and its mechanical property were discussed. The nanocomposite powders were produced by high energy ball milling of $Al_2O_3$ and Cu elemental powders. The ball-milled powders were sintered with Pulse Electric Current Sintering (PECS) facility. The relative densities of specimens sintered at $1200^{\circ}C$ and $1250^{\circ}C$ after soaking process at $900^{\circ}C$ were 96% and over 97%, respectively. The sintered microstructures were composed of $Al_2O_3$ matrix and the nano-sized Cu particles distributed on grain boundaries of $Al_2O_3$ matrix. The nanocomposite exhibited the enhanced fracture toughness compared with general monolithic $Al_2O_3$. The toughness increase was explained by the crack deflection and bridging by dispersed Cu particles.