RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Generative Adversarial Networks를 이용한 Face Morphing 기법 연구

      한글로보기

      https://www.riss.kr/link?id=A105243875

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 201...

      Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 2014, showed that the problem of computer vision can be sufficiently solved in unsupervised learning, and the generation domain can also be studied using learned generators. GAN is being developed in various forms in combination with various models. Machine learning has difficulty in collecting data. If it is too large, it is difficult to refine the effective data set by removing the noise. If it is too small, the small difference becomes too big noise, and learning is not easy. In this paper, we apply a deep CNN model for extracting facial region in image frame to GAN model as a preprocessing filter, and propose a method to produce composite images of various facial expressions by stably learning with limited collection data of two persons.

      더보기

      참고문헌 (Reference)

      1 X. Sun, "meProp: Sparsified back propagation for accelerated deep learning with reduced overfitting" 3299-3308, 2017

      2 A. Radford, "Unsupervised representation learning with deep convolutional generative adversarial networks" 1-15, 2016

      3 A. Radford, "Unsupervised representation learning with deep convolutional generative adversarial networks" 1-15, 2016

      4 J. T. Springenberg, "Striving for simplicity: The all convolutional net" 1-14, 2015

      5 R. Tachibana, "Semisupervised learning using adversarial networks" 1-6, 2016

      6 L. C. Yang, "MidiNet: A convolutional generative adversarial network for symbolicdomain music generation" 324-331, 2017

      7 E. L. Miller, "Labeled faces in the wild: A survey" 189-248, 2016

      8 X. Chen, "InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets" 2180-2188, 2016

      9 Y. Le Cun, "Gradientbased learning applied to document recognition" 86 (86): 2278-2324, 1998

      10 I. J. Goodfellow, "Generative adversarial networks" 2672-2680, 2014

      1 X. Sun, "meProp: Sparsified back propagation for accelerated deep learning with reduced overfitting" 3299-3308, 2017

      2 A. Radford, "Unsupervised representation learning with deep convolutional generative adversarial networks" 1-15, 2016

      3 A. Radford, "Unsupervised representation learning with deep convolutional generative adversarial networks" 1-15, 2016

      4 J. T. Springenberg, "Striving for simplicity: The all convolutional net" 1-14, 2015

      5 R. Tachibana, "Semisupervised learning using adversarial networks" 1-6, 2016

      6 L. C. Yang, "MidiNet: A convolutional generative adversarial network for symbolicdomain music generation" 324-331, 2017

      7 E. L. Miller, "Labeled faces in the wild: A survey" 189-248, 2016

      8 X. Chen, "InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets" 2180-2188, 2016

      9 Y. Le Cun, "Gradientbased learning applied to document recognition" 86 (86): 2278-2324, 1998

      10 I. J. Goodfellow, "Generative adversarial networks" 2672-2680, 2014

      11 M. S. Ko, "GANMOOK: Generative adversarial network to stylize images like ink wash painting" 793-795, 2017

      12 S. Lawrence, "Face recognition: A convolutional neural-network approach" 8 (8): 98-113, 1997

      13 J. Areeyapinan, "Face morphing using critical point filters" 283-288, 2012

      14 D. Triantafyllidou, "Face detection based on deep convolutional neural networks exploiting incremental facial part learning" 3560-3565, 2016

      15 Y. LeCun, "Deep learning" 521 (521): 436-444, 2015

      16 최승호, "CNN 기반 서명인식에서 시간정보를 이용한 위조판별 성능 향상" 한국디지털콘텐츠학회 19 (19): 205-212, 2018

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보 1차 FAIL (등재후보2차) KCI등재후보
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-02-17 학회명변경 한글명 : 한국디지털컨텐츠학회 -> 한국디지털콘텐츠학회 KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2005-09-21 학술지명변경 한글명 : 디지털컨텐츠학회논문지 -> 디지털콘텐츠학회논문지
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.39 0.37 0.636 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼