RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Hollow fiber membrane model for gas separation: Process simulation, experimental validation and module characteristics study

      한글로보기

      https://www.riss.kr/link?id=A104711237

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Conceptual process simulations and optimization are essential in the design, operation andtroubleshooting stages of a membrane-based gas separation system. Despite this, there are fewmathematicalmodels/tools associated with a hollow fiber membrane module available in a commercialprocess simulator. A mathematical model dealing with the hollow fiber module characteristics that canbe included within a commercial process simulator is needed to examine the performance andeconomics of a gas separation system. In this study, a hollow fiber membrane modelwas incorporated inAspen HYSYS as a user defined unit operation for the study of carbon dioxide separation from methane.
      The hollow fibermembrane model was validated experimentally. The study of a double stage membranemodule with a permeate recycle, which was proposed to be the optimal configuration in previousstudies, was extended to consider the effects of the module characteristics (such as the fiber length,radius of the fiber bundle, diameter of the fibers, and porosity) on the process performance andeconomics. The gas processing cost (GPC) increased with increasing fiber length and bundle radius, anddecreased with increasing outer diameter of the fibers and porosity. At the same time, the separationefficiency (product quality) was also dependent on these module parameters. Therefore, the tradeoff forthe hollow fiber membrane module characteristics needs to be determined based on the minimum GPCwith respect to the desired product purity.
      번역하기

      Conceptual process simulations and optimization are essential in the design, operation andtroubleshooting stages of a membrane-based gas separation system. Despite this, there are fewmathematicalmodels/tools associated with a hollow fiber membrane mod...

      Conceptual process simulations and optimization are essential in the design, operation andtroubleshooting stages of a membrane-based gas separation system. Despite this, there are fewmathematicalmodels/tools associated with a hollow fiber membrane module available in a commercialprocess simulator. A mathematical model dealing with the hollow fiber module characteristics that canbe included within a commercial process simulator is needed to examine the performance andeconomics of a gas separation system. In this study, a hollow fiber membrane modelwas incorporated inAspen HYSYS as a user defined unit operation for the study of carbon dioxide separation from methane.
      The hollow fibermembrane model was validated experimentally. The study of a double stage membranemodule with a permeate recycle, which was proposed to be the optimal configuration in previousstudies, was extended to consider the effects of the module characteristics (such as the fiber length,radius of the fiber bundle, diameter of the fibers, and porosity) on the process performance andeconomics. The gas processing cost (GPC) increased with increasing fiber length and bundle radius, anddecreased with increasing outer diameter of the fibers and porosity. At the same time, the separationefficiency (product quality) was also dependent on these module parameters. Therefore, the tradeoff forthe hollow fiber membrane module characteristics needs to be determined based on the minimum GPCwith respect to the desired product purity.

      더보기

      참고문헌 (Reference)

      1 H. Huang, 2 : 121-, 2011

      2 F. Ahmad, 36 : 119-, 2012

      3 M. H. Murad Chowdhury, 28 : 773-, 2005

      4 L. S. Tan, 21 : 7-, 2012

      5 B. D. Bhide, 81 : 209-, 1993

      6 T. Katoh, 76 : 362-, 2011

      7 M. Saidi, 18 : 274-, 2014

      8 J. I. Marriott, 25 : 693-, 2001

      9 A. S. Kovvali, 73 : 1-, 1992

      10 S. Weller, 46 : 585-, 1950

      1 H. Huang, 2 : 121-, 2011

      2 F. Ahmad, 36 : 119-, 2012

      3 M. H. Murad Chowdhury, 28 : 773-, 2005

      4 L. S. Tan, 21 : 7-, 2012

      5 B. D. Bhide, 81 : 209-, 1993

      6 T. Katoh, 76 : 362-, 2011

      7 M. Saidi, 18 : 274-, 2014

      8 J. I. Marriott, 25 : 693-, 2001

      9 A. S. Kovvali, 73 : 1-, 1992

      10 S. Weller, 46 : 585-, 1950

      11 C. Y. Pan, 32 : 2020-, 1986

      12 J. M. Thorman, 30 : 751-, 1975

      13 C. R. Antonson, 16 : 463-, 1977

      14 R. T. Chern, 24 : 1015-, 1985

      15 M. J. Thundyil, 125 : 275-, 1997

      16 D. T. Coker, 44 : 1289-, 1998

      17 S. Zhao, 233 : 310-, 2008

      18 J. Lemanski, 167 : 241-, 2000

      19 R. Khalilpour, 91 (91): 332-, 2013

      20 M. R. Sohrabi, 35 : 174-, 2011

      21 R. E. Babcock, 8 : 135-, 1988

      22 J. Hao, 209 : 177-, 2002

      23 D. Li, 40 : 15-, 2004

      24 R. Qi, 148 : 71-, 1998

      25 R. Rautenbach, 19 : 391-, 1996

      26 S. Tessendorf, 20 (20): S653-, 1996

      27 R. A. Davis, 25 : 717-, 2002

      28 S. P. Kaldis, 142 : 43-, 1998

      29 A. Hussain, 359 : 140-, 2010

      30 F. Ahmad, 430 : 44-, 2013

      31 M. Scholz, 52 : 1079-, 2012

      32 N. C. Mat, 4 : 18-, 2014

      33 S. Saxena, "Viscosity of Multicomponent Mixtures of Gases" 100-, 1973

      34 D.S. Viswanath, "Viscosity of Liquids: Theory, Estimation, Experiment, and Data" Springer 2007

      35 C. J. Geankoplis, "Transport Processes and Separation Process Principles" Prentice Hall Professional Technical Reference 2003

      36 R. C. Reid, "The Properties of Gases and Liquids" McGraw-Hill 1977

      37 N. H. Darman, "Technical Challenges and Solutions on Natural Gas Development in Malaysia" 2006

      38 P. C. Wankat, "Separation Process Engineering" Prentice-Hall 2007

      39 R. Rautenbach, "Process Design and Optimization" William Andrew 1990

      40 M. S. Peters, "Plant Design and Economics for Chemical Engineers" McGraw-Hill 1991

      41 J.N. Sahu, "Optimization of ammonia production from urea in continuous process using ASPEN Plus and computational fluid dynamics study of the reactor used for hydrolysis process" 한국공업화학회 16 (16): 577-586, 2010

      42 Hong Gi Jin, "Modeling and control of CO_2 separation process with hollow fiber membrane modules" 한국화학공학회 28 (28): 41-48, 2011

      43 R. W. Baker, "Membrane Technology and Applications" John Wiley & Sons 2004

      44 E. Drioli, "Membrane Operations" Wiley-VCH Verlag GmbH & Co 2009

      45 Abtin Ebadi Amooghin, "Mathematical modeling of mass transfer in multicomponent gas mixture across the synthesized composite polymeric membrane" 한국공업화학회 19 (19): 870-885, 2013

      46 Ferial Nosratinia, "Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors" 한국공업화학회 20 (20): 2958-2963, 2014

      47 Amornchai Arpornwichanop, "Hybrid reactive distillation systems for n-butyl acetate production from dilute acetic acid" 한국공업화학회 14 (14): 796-803, 2008

      48 H.I. Mahon, "Google Patents"

      49 R.R. Donald, "Google Patents"

      50 R. W. Spillman, "Gas Membrane Process Optimization" 1988

      51 S.S.M. Lock, "Effect of recycle ratio on the cost of natural gas processing in countercurrent hollow fiber membrane system" 한국공업화학회 21 (21): 542-551, 2015

      52 IEA, "CO2 Capture and Storage, A Key Carbon Abatement Option"

      53 A. Hysys, "Aspen HYSYS Customization Guide" Aspen Technology Inc. 2010

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.4 0.75 2.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      2.39 2.24 0.397 0.56
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼