RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      불균형 데이터 해소를 위한 오버샘플링 비교연구 = Over-Sampling Comparative Study for Imbalanced Data Classification

      한글로보기

      https://www.riss.kr/link?id=A109440733

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, as the problem of classifying and predicting imbalanced data has increased, research in various fields has intensified to solve it. This study compares re-sampling methods to address the classification problem of imbalanced data. Four classifiers, including the logistic regression model, were utilized, with AUC and F1-score serving as performance metrics in this study. The experiment yielded varied results based on the classifier or performance metrics used, and even when the classifier and performance metrics were identical, outcomes differed depending on the sample size or the imbalance rate. Therefore, this indicates the importance of making decisions based on comprehensive sensitivity analysis rather than relying solely on one data processing technique or classifier.
      번역하기

      Recently, as the problem of classifying and predicting imbalanced data has increased, research in various fields has intensified to solve it. This study compares re-sampling methods to address the classification problem of imbalanced data. Four classi...

      Recently, as the problem of classifying and predicting imbalanced data has increased, research in various fields has intensified to solve it. This study compares re-sampling methods to address the classification problem of imbalanced data. Four classifiers, including the logistic regression model, were utilized, with AUC and F1-score serving as performance metrics in this study. The experiment yielded varied results based on the classifier or performance metrics used, and even when the classifier and performance metrics were identical, outcomes differed depending on the sample size or the imbalance rate. Therefore, this indicates the importance of making decisions based on comprehensive sensitivity analysis rather than relying solely on one data processing technique or classifier.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼