Let g(2n, l, d) be the number of general cubic graphs on 2n labeled vertices with l loops and d double edges. We use inclusion and exclusion with two types of properties to determine the asymptotic behavior of g(2n, l, d) and hence that of g(2n), the ...
Let g(2n, l, d) be the number of general cubic graphs on 2n labeled vertices with l loops and d double edges. We use inclusion and exclusion with two types of properties to determine the asymptotic behavior of g(2n, l, d) and hence that of g(2n), the total number of general cubic graphs of order 2n. We show that almost all general cubic graphs are connected. Moreover, we determined the asymptotic numbers of general cubic graphs with given connectivity.