RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Experimental Simulation of Titan's Stratospheric Photochemistry: Benzene (C6H6) Ices

      한글로보기

      https://www.riss.kr/link?id=O111676284

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        2169-9097

      • Online ISSN

        2169-9100

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We performed laboratory experiments to study the photochemical evolution induced by long‐UV irradiation of benzene ices in Titan's atmosphere. The aim of this study was to investigate whether photo‐processed benzene ices could lead to the formatio...

      We performed laboratory experiments to study the photochemical evolution induced by long‐UV irradiation of benzene ices in Titan's atmosphere. The aim of this study was to investigate whether photo‐processed benzene ices could lead to the formation of aerosols analogs to those observed in Titan's stratosphere. Prior to that, spectroscopic properties of amorphous and crystalline benzene ices were studied as a function of temperature, using infrared spectroscopy. UV photolysis experiments (λ > 230 nm) of benzene ices led to the formation of volatile photo‐products, among which fulvene is identified, and of a residue dominated by νCH IR features, demonstrating that pure aromatic‐based polymeric structures are not sufficient to explain the composition of Titan's stratospheric haze layer. However, we provide a characterization of long‐UV‐induced benzene‐containing aerosol analogs, which will contribute to Titan's surface organics layer. These data are of prime interest in the context of the future Dragonfly space mission.
      Titan, often compared with the early Earth, is the only moon in the solar system to have a dense atmosphere, mainly composed of nitrogen and methane. In the upper part of the atmosphere (>1,000 km), UV photons, photoelectrons, energetic ions and magnetospheric electrons induce the dissociation and the ionization of nitrogen and methane. These reactions lead to the formation of complex organic molecules—including hydrocarbons such as benzene—and aerosols in the high atmosphere (an organic haze responsible for Titan's brownish color), which are subject to different UV radiation classes depending on the altitude. Therefore, during their sedimentation toward the surface, these organic photoproducts are expected to be modified. Once the tropopause is reached, molecules like benzene (C6H6) condense and could evolve under FUV radiations (λ > 200 nm) and contribute to aerosol formation.



      Laboratory experiments demonstrate that the interaction between FUV photons and benzene ice leads to a solid‐state photochemical activity

      The in situ monitoring by infrared spectroscopy of the benzene ice photolysis leads to identify the formation of one of benzene's isomer, fulvene

      The photo‐produced residue presents some IR features similar to those of Titan's aerosols probed by Cassini/VIMS


      Laboratory experiments demonstrate that the interaction between FUV photons and benzene ice leads to a solid‐state photochemical activity
      The in situ monitoring by infrared spectroscopy of the benzene ice photolysis leads to identify the formation of one of benzene's isomer, fulvene
      The photo‐produced residue presents some IR features similar to those of Titan's aerosols probed by Cassini/VIMS

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼