RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Protein Folding Thermodynamics: A New Computational Approach

      한글로보기

      https://www.riss.kr/link?id=A107555876

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Folding free energy is the fundamental thermodynamic quantity characterizing the stability of a protein. Yet, its accurate determination based on computational techniques remains a challenge in physical chemistry. A straightforward brute-forc...

      <P>Folding free energy is the fundamental thermodynamic quantity characterizing the stability of a protein. Yet, its accurate determination based on computational techniques remains a challenge in physical chemistry. A straightforward brute-force approach would be to conduct molecular dynamics simulations and to estimate the folding free energy from the equilibrium population ratio of the unfolded and folded states. However, this approach is not sensible at physiological conditions where the equilibrium population ratio is vanishingly small: it is extremely difficult to reliably obtain such a small equilibrium population ratio due to the low rate of folding/unfolding transitions. It is therefore desirable to have a computational method that solely relies on simulations independently carried out for the folded and unfolded states. Here, we present such an approach that focuses on the probability distributions of the effective energy (solvent-averaged protein potential energy) in the folded and unfolded states. We construct these probability distributions for the protein villin headpiece subdomain by performing extensive molecular dynamics simulations and carrying out solvation free energy calculations. We find that the probability distributions of the effective energy are well-described by the Gaussian distributions for both the folded and unfolded states due to the central limit theorem, which enables us to calculate the protein folding free energy in terms of the mean and the width of the distributions. The computed protein folding free energy (−2.5 kcal/mol) is in accord with the experimental result (ranging from −2.3 to −3.2 kcal/mol depending on the experimental methods).</P><P><B>Graphic Abstract</B>
      <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jpcbfk/2014/jpcbfk.2014.118.issue-19/jp500269m/production/images/medium/jp-2014-00269m_0004.gif'></P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼