RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      Synergistic Utilization of Dichloroethylene as Sole Carbon Source by Bacterial Consortia Isolated from Contaminated Sites in Africa

      한글로보기

      https://www.riss.kr/link?id=A100966711

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.
      번역하기

      The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediatio...

      The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼