RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      내용기반 검색 기법을 이용한 인터넷 기반 유방종양 조직병리영상 검색 시스템 개발 = Development of Histopathological Breast Tumor Image Retrieval System Based on Internet Using a Content-based Retrieval Method

      한글로보기

      https://www.riss.kr/link?id=A101593226

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Objective: We have developed breast tumor image retrieval system using content-based retrieval method. It compares the breast tumor image with Fibrocystic Change images, Ductal Carcinoma in Situ images and Invasive Ductal Carcinoma images and find mos...

      Objective: We have developed breast tumor image retrieval system using content-based retrieval method. It compares the breast tumor image with Fibrocystic Change images, Ductal Carcinoma in Situ images and Invasive Ductal Carcinoma images and find most similar one. Since the final diagnosis for breast tumor image is done only by pathologist manually, this system can provide the objectivity and the reproducibility for determining and diagnosing the breast tumor. Methods: The breast tumor image features used in the content-based image retrieval are color feature, texture feature and texture features of wavelet transformed images. And the system can be accessed through the internet. We used Windows 2003 as an operating system, Internet Information Server 6.0 as Web a server and ms-sql server 2000 as a database server. Also we use ActiveX Data Object to connect database easily. Result: We evaluated the recall and precision performance of the system according to the combinations of feature types and usage of partial or whole image. Results showed that the use of multiple features and whole image gave consistently higher rates compared to the use of single feature and partial image. Conclusion: This retrieval system can help pathologist determine the type of breast tumor more efficiently. Also it is working based on the internet, we can use it for researching and teaching in pathology later.

      더보기

      참고문헌 (Reference)

      1 "Region-based image retrieval using integrated color,shape,and location index" 94 : 193-233, 2004

      2 "New methods for image analysis of tissue sections [dissertation]" Uppsala University 1996

      3 "Image retrieval by texture similarity" 36 : 665-679, 2003

      4 "Image classification using color,texture and regions" 21 : 759-776, 2003

      5 "Grading of transitional cell bladder carcinoma by texture analysis of histological section" 6 : 327-343, 1994

      6 "Design of a two-stage content-based image retrieval system using texture similarity" 40 : 81-96, 2004

      7 "Content-based cell image retrieval using automated extraction" 7 (7): 404-415, 2000

      8 "Computing,explaining and visualizing shape similarity in content- based image retrieval" 10 : 1-19, 2004

      9 "Classification of cell and tissue images in breast tumor [dissertation]" Inje University 2002

      10 "Analysis and extraction of significant features for creating an optimized classifier of bladder carcinoma cell histological images [dissertation]" Inje University 2001

      1 "Region-based image retrieval using integrated color,shape,and location index" 94 : 193-233, 2004

      2 "New methods for image analysis of tissue sections [dissertation]" Uppsala University 1996

      3 "Image retrieval by texture similarity" 36 : 665-679, 2003

      4 "Image classification using color,texture and regions" 21 : 759-776, 2003

      5 "Grading of transitional cell bladder carcinoma by texture analysis of histological section" 6 : 327-343, 1994

      6 "Design of a two-stage content-based image retrieval system using texture similarity" 40 : 81-96, 2004

      7 "Content-based cell image retrieval using automated extraction" 7 (7): 404-415, 2000

      8 "Computing,explaining and visualizing shape similarity in content- based image retrieval" 10 : 1-19, 2004

      9 "Classification of cell and tissue images in breast tumor [dissertation]" Inje University 2002

      10 "Analysis and extraction of significant features for creating an optimized classifier of bladder carcinoma cell histological images [dissertation]" Inje University 2001

      11 "Algorithms for image processing and computer vision" Wiley Computer Publishing 150-174, 1997

      12 "A region -based database system using colour and texture" 20 : 1323-1330, 1999

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-04-05 학술지명변경 한글명 : 대한의료정보학회지 -> Healthcare Informatics Research
      외국어명 : Journal of Korean Society of Medical Informatics -> Healthcare Informatics Research
      KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.24 0.24 0.21
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.18 0.15 0.434 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼