RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Optimization of Classifier Performance at Local Operating Range = A Case Study in Fraud Detection

      한글로보기

      https://www.riss.kr/link?id=A76130185

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Building classifiers for financial real-world classification problems is often plagued by severely overlapping and highly skewed class distribution. New performance measures such as receiver operating characteristic (ROC) curve and area under ROC curv...

      Building classifiers for financial real-world classification problems is often plagued by severely overlapping and highly skewed class distribution. New performance measures such as receiver operating characteristic (ROC) curve and area under ROC curve (AUC) have been recently introduced in evaluating and building classifiers for those kind of problems. They are, however, ineffective to evaluation of classifier's discrimination performance in a particular class of the classification problems that interests lie in only a local operating range of the classifier. In this paper, a new method is proposed that enables us to directly improve classifier's discrimination performance at a desired local operating range by defining and optimizing a partial area under ROC curve or domain-specific curve, which is difficult to achieve with conventional classification accuracy based learning methods. The effectiveness of the proposed approach is demonstrated in terms of fraud detection capability in a real-world fraud detection problem compared with the MSE-based approach.

      더보기

      목차 (Table of Contents)

      • Abstract
      • Ⅰ. Introduction
      • Ⅱ. Optimization of Classifier Performance based on Partial Area Under Curve
      • Ⅲ. Experimental Results
      • Ⅳ. Conclusions
      • Abstract
      • Ⅰ. Introduction
      • Ⅱ. Optimization of Classifier Performance based on Partial Area Under Curve
      • Ⅲ. Experimental Results
      • Ⅳ. Conclusions
      • References
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼