RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Impedance boundary condition analysis of aging-induced wave reflections in blood flow

      한글로보기

      https://www.riss.kr/link?id=A103731302

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Modeling circulatory system can help the diagnosis of vessels and predict future risk of diseases. However, the complicated geometry, elasticity of blood vessel, and pulsatile flow of blood put the accurate circulatory system modeling in a challenging...

      Modeling circulatory system can help the diagnosis of vessels and predict future risk of diseases. However, the complicated geometry, elasticity of blood vessel, and pulsatile flow of blood put the accurate circulatory system modeling in a challenging task. Various modeling methods are developed to improve its accuracy. LBM solver can easily convert medical image data into lattice grid coordinates. Non-Newtonian model considers viscoelasticity of blood. Also, wall boundary treatment using ghost nodes improves the accuracy of fluid modeling. Finally, impedance boundary condition can successfully develop the effect of wave reflection at the outlet of computational domain. These efficient modeling techniques are not yet well combined each other. The purpose of this paper is to apply these methods in the circulatory system modeling to observe the relationship between vessel elasticity and blood flow wave reflection. Flow rate differences and shear stresses are analyzed by reflecting various vessel ages.

      더보기

      참고문헌 (Reference)

      1 Atabek, H., "Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube" 8 : 626-649, 1968

      2 S. Sen, "Theoretical study on the constricted flow phenomena in arteries" 한국유변학회 24 (24): 287-295, 2012

      3 Gijsen, F., "The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model" 32 : 601-608, 1999

      4 Kim, Y.H., "The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method" 38 : 2274-2292, 2010

      5 Pedley, T. J., "The Fluid Mechanics of Large Blood Vessels" Cambridge Univ 1980

      6 Olufsen, M.S., "Structured tree outflow condition for blood flow in larger systemic arteries, American journal of physiology" 276 : H257-H268, 1999

      7 Darne, B., "Pulsatile versus steady component of blood pressure: a crosssectional analysis and a prospective analysis on cardiovascular mortality" 13 : 392-400, 1989

      8 Vignon-Clementel, I.E., "Outflow boundary conditions for threedimensional finite element modeling of blood flow and pressure in arteries" 195 : 3776-3796, 2006

      9 Vignon-Clementel, I.E., "Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries" 13 : 625-640, 2010

      10 서태원, "Numerical simulations of blood flow in arterial bifurcation models" 한국유변학회 25 (25): 153-161, 2013

      1 Atabek, H., "Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube" 8 : 626-649, 1968

      2 S. Sen, "Theoretical study on the constricted flow phenomena in arteries" 한국유변학회 24 (24): 287-295, 2012

      3 Gijsen, F., "The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model" 32 : 601-608, 1999

      4 Kim, Y.H., "The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method" 38 : 2274-2292, 2010

      5 Pedley, T. J., "The Fluid Mechanics of Large Blood Vessels" Cambridge Univ 1980

      6 Olufsen, M.S., "Structured tree outflow condition for blood flow in larger systemic arteries, American journal of physiology" 276 : H257-H268, 1999

      7 Darne, B., "Pulsatile versus steady component of blood pressure: a crosssectional analysis and a prospective analysis on cardiovascular mortality" 13 : 392-400, 1989

      8 Vignon-Clementel, I.E., "Outflow boundary conditions for threedimensional finite element modeling of blood flow and pressure in arteries" 195 : 3776-3796, 2006

      9 Vignon-Clementel, I.E., "Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries" 13 : 625-640, 2010

      10 서태원, "Numerical simulations of blood flow in arterial bifurcation models" 한국유변학회 25 (25): 153-161, 2013

      11 Olufsen, M.S., "Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions" 28 : 1281-1299, 2000

      12 Chen, J., "Numerical investigation of the non- Newtonian blood flow in a bifurcation model with a non-planar branch" 37 : 1899-1911, 2004

      13 Taqi Ahmad Cheema, "Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel" 한국유변학회 25 (25): 121-127, 2013

      14 Johnston, B.M., "Non-Newtonian blood flow in human right coronary arteries: steady state simulations" 37 : 709-720, 2004

      15 Pralhad, R.N., "Modeling of arterial stenosis and its applications to blood diseases" 190 : 203-220, 2004

      16 Shojima, M., "Magnitude and role of wall shear stress on cerebral aneurysm computational fluid dynamic study of 20 middle cerebral artery aneurysms" 35 : 2500-2505, 2004

      17 Fang, H., "Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels" 65 : 051925-, 2002

      18 Rohde, M., "Improved bounce-back methods for no-slip walls in lattice- Boltzmann schemes: Theory and simulations" 67 : 066703-, 2003

      19 Seong Wook Cho, "Fluid-structure interaction analysis on the effects of vessel material properties on blood flow characteristics in stenosed arteries under axial rotation" 한국유변학회 23 (23): 7-16, 2011

      20 Fisher, C., "Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms" 131 : 091004-, 2009

      21 Salvi, P., "Does it make sense to measure only the brachial blood pressure?" 36 : 21-25, 2013

      22 Agabiti-Rosei, E., "Central blood pressure measurements and antihypertensive therapy: a consensus document" 50 : 154-160, 2007

      23 Weber, T., "Arterial stiffness, wave reflections, and the risk of coronary artery disease" 109 : 184-189, 2004

      24 Itu, L., "Analysis of outflow boundary condition implementations for 1D blood flow models" IEEE 1-4, 2011

      25 Womersley, J.R., "An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries" Wright Air Development Center, Dayton, Ohio 1957

      26 Inamuro, T., "A non-slip boundary condition for lattice Boltzmann simulations" 7 : 2928-, 1995

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-01-01 평가 SCIE 등재 (등재유지) KCI등재
      2012-01-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.01 0.18 0.77
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.59 0.52 0.327 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼