RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Impacts of Atmospheric Nitrogen Deposition and Coastal Nitrogen Fluxes on Oxygen Concentrations in Chesapeake Bay

      한글로보기

      https://www.riss.kr/link?id=O119630941

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        2169-9275

      • Online ISSN

        2169-9291

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        5004-5025   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Although rivers are the primary source of dissolved inorganic nitrogen (DIN) inputs to the Chesapeake Bay, direct atmospheric DIN deposition and coastal DIN concentrations on the continental shelf can also significantly influence hypoxia; however, the...

      Although rivers are the primary source of dissolved inorganic nitrogen (DIN) inputs to the Chesapeake Bay, direct atmospheric DIN deposition and coastal DIN concentrations on the continental shelf can also significantly influence hypoxia; however, the relative impact of these additional sources of DIN on Chesapeake Bay hypoxia has not previously been quantified. In this study, the estuarine‐carbon‐biogeochemistry model embedded in the Regional‐Ocean‐Modeling‐System (ChesROMS‐ECB) is used to examine the relative impact of these three DIN sources. Model simulations highlight that DIN from the atmosphere has roughly the same impact on hypoxia as the same gram‐for‐gram change in riverine DIN loading, although their spatial and temporal distributions are distinct. DIN concentrations on the continental shelf have a similar overall impact on hypoxia as DIN from the atmosphere (~0.2 mg L−1); however, atmospheric DIN impacts dissolved oxygen (DO) primarily via the decomposition of autochthonous organic matter, whereas coastal DIN concentrations primarily impact DO via the decomposition of allochthonous organic matter entering the Bay mouth from the shelf. The impacts of atmospheric DIN deposition and coastal DIN concentrations on hypoxia are greatest in summer and occur farther downstream (southern mesohaline) in wet years than in dry years (northern mesohaline). Integrated analyses of the relative contributions of all three DIN sources on summer bottom DO indicate that impacts of atmospheric deposition are largest in the eastern mesohaline shoals, riverine DIN has dominant impacts in the largest tributaries and the oligohaline Bay, while coastal DIN concentrations are most influential in the polyhaline region.
      Most organisms living in the Chesapeake Bay, like fish, crabs, and oysters, need adequate oxygen concentrations to survive. However, general increases in the supply of nutrients to estuaries always enhance the production of algae, and the decomposition of these algae takes away oxygen from other organisms, resulting in hypoxic (low‐oxygen) conditions or what is commonly referred to as a “dead zone.” Generally, researchers focus on how terrestrial nutrients entering the bay, for example, from fertilizer, wastewater treatment, or sewer runoff, produce the Chesapeake Bay dead zone, since they account for most of the nutrients entering the bay. However, the atmospheric and oceanic nutrients directly impacting the bay are often not accurately considered. In this study the impacts of nutrients from the atmosphere and the open ocean on Chesapeake Bay hypoxia are quantified via the application of a three‐dimensional ecosystem model. Atmospheric deposition of nitrate is found to have the same gram‐for‐gram impact on hypoxia as terrestrial nitrate entering via rivers. Overall, these two sources of nutrients have the greatest impact in the summer and have similar impacts on dissolved oxygen, reducing oxygen concentrations by up to 0.2 mg L−1 in the mid‐Chesapeake Bay region where oxygen concentrations are lowest.


      Atmospheric dissolved inorganic nitrogen deposition has about the same gram for gram impact on Chesapeake Bay hypoxia as riverine loading
      Atmospheric nitrogen deposition and shelf nitrogen concentrations have their greatest impact on Chesapeake Bay hypoxia during the summer
      The greatest impacts of atmospheric deposition and shelf nitrogen concentrations are farther downstream in wet years compared to dry years

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼