RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Instance categorization by support vector machines to adjust weights in AdaBoost for imbalanced data classification

      한글로보기

      https://www.riss.kr/link?id=A107735909

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>To address class imbalance in data, we propose a new weight adjustment factor that is applied to a weighted support vector machine (SVM) as a weak learner of the AdaBoost algorithm. Different factor scores are computed by categorizing instances based on the SVM margin and are assigned to related instances. The SVM margin is used to define borderline and noisy instances, and the factor scores are assigned to only borderline instances and positive noise. The adjustment factor is then employed as a multiplier to the instance weight in the AdaBoost algorithm when learning a weighted SVM. Using 10 real class-imbalanced datasets, we compare the proposed method to a standard SVM and other SVMs combined with various sampling and boosting methods. Numerical experiments show that the proposed method outperforms existing approaches in terms of F-measure and area under the receiver operating characteristic curve, which means that the proposed method is useful for relaxing the class-imbalance problem by addressing well-known degradation issues such as overlap, small disjunct, and data shift problems. (C) 2016 Elsevier Inc. All rights reserved.</P>
      번역하기

      <P>To address class imbalance in data, we propose a new weight adjustment factor that is applied to a weighted support vector machine (SVM) as a weak learner of the AdaBoost algorithm. Different factor scores are computed by categorizing instanc...

      <P>To address class imbalance in data, we propose a new weight adjustment factor that is applied to a weighted support vector machine (SVM) as a weak learner of the AdaBoost algorithm. Different factor scores are computed by categorizing instances based on the SVM margin and are assigned to related instances. The SVM margin is used to define borderline and noisy instances, and the factor scores are assigned to only borderline instances and positive noise. The adjustment factor is then employed as a multiplier to the instance weight in the AdaBoost algorithm when learning a weighted SVM. Using 10 real class-imbalanced datasets, we compare the proposed method to a standard SVM and other SVMs combined with various sampling and boosting methods. Numerical experiments show that the proposed method outperforms existing approaches in terms of F-measure and area under the receiver operating characteristic curve, which means that the proposed method is useful for relaxing the class-imbalance problem by addressing well-known degradation issues such as overlap, small disjunct, and data shift problems. (C) 2016 Elsevier Inc. All rights reserved.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼