In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed ...
In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.