RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      공간데이타 마이닝을 위한 효율적인 그리드 셀 기반 공간 클러스터링 알고리즘 = An Efficient Grid Cell Based Spatial Clustering Algorithm for Spatial Data Mining

      한글로보기

      https://www.riss.kr/link?id=A101432821

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      대용량의 공간데이터베이스로부터 암시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이타 양이 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이터 마이닝...

      대용량의 공간데이터베이스로부터 암시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이타 양이 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이터 마이닝에서 데이타를 분석하여 유사한 그룹으로 분류하는 공간 클러스터링은 매우 중요한 분야이다. 기존 연구에서 공간 클러스터링을 위한 여러 가지 알고리즘들이 제시되었지만, 다음과 같은 문제점들이 있다. 먼저 클러스터링을 위하여 객체들 간의 거리론 기반으로 하므로 데이타 양이 많아질수록 계산 비용이 커진다. 또한, 메모리 상주 데이타를 대상으로 하므로 대용량의 데이타인 경우에 효율이 떨어진다. 본 논문에서는 공간데이터 마이닝을 위하여 그리드 셀을 기반으로 한 효율적인 공간 클러스터링 방법을 제시한다. 이 클러스터링에서는 기존 공간 클러스터링 기법들의 문제점을 해결하는데 중점을 둔다. 세부적으로 공간 클러스터링의 효율성을 높이기 위하여 클러스터링시에 발생하는 비용(계산량)을 감소시키는 것이다. 이를 위해서 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 기반으로 한 공간 클러스터링 기법을 제시한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Spatial data mining, i.e., discovery of interesting characteristics and patterns that may implicitly exists in spatial databases, is a challenging task due to the huge amounts of spatial data. Clustering algorithms are attractive for the task of class...

      Spatial data mining, i.e., discovery of interesting characteristics and patterns that may implicitly exists in spatial databases, is a challenging task due to the huge amounts of spatial data. Clustering algorithms are attractive for the task of class identification in spatial databases. Several methods for spatial clustering have been presented in recent years, but have the following several drawbacks increase costs due to computing distance among objects and process only memory-resident data. In this paper, we propose an efficient grid cell based spatial clustering method for spatial data mining. It focuses on resolving disadvantages of existing clustering algorithms. In details, it aims to reduce cost further for good efficiency on large databases. To do this, we devise a spatial clustering algorithm based on grid ceil structures including cell relationships.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2012-10-01 평가 학술지 통합(등재유지)
      2010-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS(등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정(신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼