RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Destruction of Tissue Architecture Induced by Dust Particles in Inkjet Bioprinted Alveolar Barrier

      한글로보기

      https://www.riss.kr/link?id=A107947946

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Atmosphere dust particles travel into our body via the airway and cause damages to our respiratory system, which causes severe respiratory diseases. Therefore, the need for studies to analyze the effects of dust particles on the respiratory system has...

      Atmosphere dust particles travel into our body via the airway and cause damages to our respiratory system, which causes severe respiratory diseases. Therefore, the need for studies to analyze the effects of dust particles on the respiratory system has been emphasized. However, most studies about the toxicity of dust have been carried out in two-dimensional cell culture, animal models, and epidemiological investigations. To figure out how dust can cause respiratory disease, it is necessary to examine using a reliable three-dimensional structured model, which mimics human nature alveoli. In this study, we applied atmospheric dust particles in dose- and time-dependent manner on our previously developed three-dimensional alveolar barrier, which is generated by the inkjet bioprinting process. As results, we observed destruction of tissue architecture along with cell death in our engineered alveolar barrier. Based on the damages in cellular levels, we observed increased pro-inflammatory cytokines, which trigger the signal transduction pathway leading to the activation of transcription factors. As cascades of release of cytokines, we confirmed a degradation of extracellular matrix, which might induce a collapse of the structure, loss of cell polarity, and a decreased barrier tightness. We further investigated pulmonary surfactant protein-related genes in dust-treated alveolar tissue then we could estimate the possible harmful effect of dust on pulmonary surfactant dysfunction. This study demonstrated the physiological impact of dust on cytotoxicity effects, alveolar barrier rigidity, and surfactant secretion using inkjet bioprinted alveolar barrier in gene expression level. Additionally, it has been demonstrated that dust can have serious consequences that can lead to the collapse of the tissue structure. We expect that this strategy using in vitro inkjet bioprinted 3D alveolar barrier can be a useful tool for identifying pollutant exposure-related diseases.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼