RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      주파수 필터링 함수에 따른 시간 및 주파수 영역 광음향 측정에 대한 노이즈-대비-신호 분석 = Signal-to-noise ratio in time- and frequency-domain photoacoustic measurements by different frequency filtering

      한글로보기

      https://www.riss.kr/link?id=A106158759

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We investigate the signal-to-noise ratios (SNRs) of time-domain (i.e. pulsed illumination) and frequency-domain (i.e. chirped illumination) photoacoustic signals measured by a spherically focused ultrasound transducer for spherical absorbers. The simu...

      We investigate the signal-to-noise ratios (SNRs) of time-domain (i.e. pulsed illumination) and frequency-domain (i.e. chirped illumination) photoacoustic signals measured by a spherically focused ultrasound transducer for spherical absorbers. The simulation results show that the time-domain photoacoustic SNR is higher than that of frequency-domain photoacoustic signals, as reported in the previous literature. We understand the reason for this SNR gap between the two measurement modes by analyzing photoacoustic-signal spectra, considering the incident beam energy controlled by the maximum permissible exposure. As the result of this approach, we find that filtering off the DC term in the chirped signal’s spectrum improves frequency-domain photoacoustic SNRs by up to approximately 5 dB. In particular, it is observed that photoacoustic SNRs are highly sensitive to an upper-frequency value of frequency filtering functions, and the optimal upper-frequency values maximizing the SNR are different in time- and frequency-domain photoacoustic measurements.

      더보기

      참고문헌 (Reference)

      1 B. E. Treeby, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields" 15 : 021314-, 2010

      2 Y. Zhou, "Tutorial on photoacoustic tomography" 21 : 061007-, 2016

      3 J. Goodman, "Statistical Optics" Wiley 2000

      4 E. M. Strohm, "Single cell photoacoustic microscopy : A review" 22 : 6801215-, 2016

      5 S. Telenkov, "Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains" 81 : 124901-, 2010

      6 J. Yao, "Sensitivity of photoacoustic microscopy" 2 : 87-101, 2014

      7 J. Wang, "Saturation effect in functional photoacoustic imaging" 15 : 021317-, 2010

      8 C. E. Cook, "Radar signals; an introduction to theory and application" Artech house, Inc 1993

      9 C. Li, "Photoacoustic tomography and sensing in biomedicine" 54 : R59-R97, 2009

      10 L. V. Wang, "Photoacoustic tomography : In vivo imaging from organelles to organs" 335 : 1458-1462, 2012

      1 B. E. Treeby, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields" 15 : 021314-, 2010

      2 Y. Zhou, "Tutorial on photoacoustic tomography" 21 : 061007-, 2016

      3 J. Goodman, "Statistical Optics" Wiley 2000

      4 E. M. Strohm, "Single cell photoacoustic microscopy : A review" 22 : 6801215-, 2016

      5 S. Telenkov, "Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains" 81 : 124901-, 2010

      6 J. Yao, "Sensitivity of photoacoustic microscopy" 2 : 87-101, 2014

      7 J. Wang, "Saturation effect in functional photoacoustic imaging" 15 : 021317-, 2010

      8 C. E. Cook, "Radar signals; an introduction to theory and application" Artech house, Inc 1993

      9 C. Li, "Photoacoustic tomography and sensing in biomedicine" 54 : R59-R97, 2009

      10 L. V. Wang, "Photoacoustic tomography : In vivo imaging from organelles to organs" 335 : 1458-1462, 2012

      11 D. Kang, "Photoacoustic resonance by spatial filtering of focused ultrasound transducers" 42 : 655-658, 2017

      12 B. Lashkari, "Photoacoustic radar imaging signal-to-noise ratio, contrast, and resolution enhancement using nonlinear chirp modulation Bahman" 35 : 1623-1625, 2010

      13 K. Konstantin, "Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser" 13 : 024006-, 2008

      14 L. Yang, "Photoacoustic and ultrasound imaging of cancellous bonetissue" 20 : 076016-, 2015

      15 S. R. Arridge, "Optical tomography in medical imaging" 15 : R41-R93, 1999

      16 D. Leedom, "New equivalent circuits for elementary piezoelectric transducers" 6 : 398-399, 1970

      17 B. Lashkari, "Linear frequency modulation photoacoustic radar: Optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media" 130 : 1313-1324, 2011

      18 G. R. Fowles, "Introduction to Modern Optics" Holt, Rinehart and Winston 1957

      19 S. Kellnberger, "In vivo frequency domain optoacoustic tomography" 37 : 3423-3425, 2012

      20 S. Telenkov, "Frequency-domain photothermoacoustics : Alternative imaging modality of biological tissues" 105 : 102029-, 2009

      21 G. Langer, "Frequency domain photoacoustic and fluorescence microscopy" 7 : 1-11, 2016

      22 H. H. Barrett, "Foundations of Image Science" Wiley 2004

      23 D. Kang, "Figure of merit for task-based assessment of frequency-domain diffusive imaging" 38 : 235-237, 2013

      24 B. T. Cox, "Fast calculation of pulsed photoacoustic fields in fluids using k-space methods" 117 : 3616-3627, 2005

      25 A. Petschke, "Comparison of intensitymodulated continuous-wave lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications" 1 : 1188-1195, 2010

      26 B. Lashkari, "Comparison between pulsed laser and frequency-domain photoacoustic modalities: Signalto-noise ratio, contrast, resolution, and maximum depth detectivity" 82 : 094903-, 2011

      27 P. Beard, "Biomedical photoacoustic imaging : A review" 1 : 602-631, 2011

      28 "American National Standard for the Safe Use of Lasers, ANSI Z136.1-2014, Laser Institute of America, Orlando, FL"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-07-23 학술지명변경 외국어명 : Hankook Kwanghak Hoeji -> Korean Journal of Optics and Photonics KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.22 0.22 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.19 0.15 0.533 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼