RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      딥러닝을 이용한 핸드크림의 마찰 시계열 데이터 분류 = Deep Learning-based Approach for Classification of Tribological Time Series Data for Hand Creams

      한글로보기

      https://www.riss.kr/link?id=A107867873

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the need...

      The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, although they do not have much time for new product development. The selection of new products from candidate products largely depend on the panel of human sensory experts. As new product development cycle time decreases, the formulators wanted to find systematic tools that are required to filter candidate products into a short list. Traditional statistical analysis on most physical property tests for the products including tribology tests and rheology tests, do not give any sound foundation for filtering candidate products. In this paper, we suggest a deep learning-based analysis method to identify hand cream products by raw electric signals from tribological sliding test. We compare the result of the deep learning-based method using raw data as input with the results of several machine learning-based analysis methods using manually extracted features as input. Among them, ResNet that is a deep learning model proved to be the best method to identify hand cream used in the test. According to our search in the scientific reported papers, this is the first attempt for predicting test cosmetic product with only raw time-series friction data without any manual feature extraction. Automatic product identification capability without manually extracted features can be used to narrow down the list of the newly developed candidate products.

      더보기

      목차 (Table of Contents)

      • 1. 서론 2. 배경 3. 실험장치 및 실험방법 4. 분석방법 5. 실험 및 분석 6. 결론
      • 1. 서론 2. 배경 3. 실험장치 및 실험방법 4. 분석방법 5. 실험 및 분석 6. 결론
      더보기

      참고문헌 (Reference)

      1 권영하, "화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구" 한국감성과학회 8 (8): 385-391, 2005

      2 신윤식, "텍스트 마이닝을 활용한 사용자 핵심 요구사항 분석 방법론 : 중국 온라인 화장품 시장을 중심으로" 한국산업경영시스템학회 44 (44): 66-77, 2021

      3 이재하, "여성 화장품 용기디자인이 구매성향에 미치는 영향에 관한 연구" 한국산업경영시스템학회 27 (27): 52-58, 2004

      4 "https://www.loreal-finance.com/en/annual-report-2018/cosmetics-market-2-1/"

      5 Nakano, K., "Tribological Method to Objectify Similarity of Vague Tactile Sensations Experienced during Application of Liquid Cosmetic Foundations" 63 : 8-13, 2013

      6 Mittelman, R., "Time-Series Modeling with Undecimated Fully Convolutional Neural Networks"

      7 Wang, Z., "Time Series Classification from Scratch with Deep Neural Networks : A Strong Baseline"

      8 류주연, "Texture Analyzer (TA)를 이용한 화장품 크림의 In Vivo 끈적임 평가법의 최적화" 사단법인 대한화장품학회 46 (46): 371-382, 2020

      9 Ahuja, A., "Rheological Predictions of Sensory Attributes of Lotions" 50 (50): 295-305, 2019

      10 Moravkova, T., "Relation between Sensory Analysis and Rheology of Body Lotions" 38 (38): 558-566, 2016

      1 권영하, "화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구" 한국감성과학회 8 (8): 385-391, 2005

      2 신윤식, "텍스트 마이닝을 활용한 사용자 핵심 요구사항 분석 방법론 : 중국 온라인 화장품 시장을 중심으로" 한국산업경영시스템학회 44 (44): 66-77, 2021

      3 이재하, "여성 화장품 용기디자인이 구매성향에 미치는 영향에 관한 연구" 한국산업경영시스템학회 27 (27): 52-58, 2004

      4 "https://www.loreal-finance.com/en/annual-report-2018/cosmetics-market-2-1/"

      5 Nakano, K., "Tribological Method to Objectify Similarity of Vague Tactile Sensations Experienced during Application of Liquid Cosmetic Foundations" 63 : 8-13, 2013

      6 Mittelman, R., "Time-Series Modeling with Undecimated Fully Convolutional Neural Networks"

      7 Wang, Z., "Time Series Classification from Scratch with Deep Neural Networks : A Strong Baseline"

      8 류주연, "Texture Analyzer (TA)를 이용한 화장품 크림의 In Vivo 끈적임 평가법의 최적화" 사단법인 대한화장품학회 46 (46): 371-382, 2020

      9 Ahuja, A., "Rheological Predictions of Sensory Attributes of Lotions" 50 (50): 295-305, 2019

      10 Moravkova, T., "Relation between Sensory Analysis and Rheology of Body Lotions" 38 (38): 558-566, 2016

      11 Pensé-Lhéritier, A. -M., "Recent Developments in the Sensorial Assessment of Cosmetic Products: a Review" 37 (37): 465-473, 2015

      12 Deborah Adefunke Adejokun, "Quantitative Sensory Interpretation of Rheological Parameters of a Cream Formulation" MDPI AG 7 (7): 2-, 2020

      13 Guest, S., "Perceptual and Sensory-Functional Consequences of Skin Care Products" 3 (3): 66-78, 2013

      14 Cui, Z., "Multi-Scale Convolutional Neural Networks for Time Series Classification"

      15 Alisa, E., "Measuring the Feeling: Correlations of Sensorial to Instrumental Analyses of Cosmetic Products" 425-428, 2017

      16 Huynh, A., "Measurements meet Perceptions: Rheology-Texture-Sensory Relations when using Green, Bio-derived Emollients in Cosmetic Emulsions" 43 : 11-19, 2021

      17 Savary, G., "Instrumental and Sensory Methodologies to Characterize the Residual Film of Topical Products Applied to Skin" 25 (25): 415-423, 2019

      18 Russakovsky, O., "ImageNet Large Scale Visual Recognition Challenge" 115 : 211-252, 2015

      19 Bae, J. -E., "Effects of Linear and Nonlinear Shear Deformation on Measurement for Stickiness of Cosmetics Using Rotational Rheometer" 2 (2): 33-46, 2020

      20 Calixto, L. S., "Design and Characterization of Topical Formulations:Correlations between Instrumental and Sensorial Measurements" 19 : 1512-1519, 2018

      21 He, K., "Deep Residual Learning for Image Recognition" 770-778, 2016

      22 Fawaz, H. I., "Deep Learning for Time Series Classification: a Review" 33 : 917-963, 2019

      23 Geng, Y., "Cost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification"

      24 Zhao, B., "Convolutional Neural Networks for Time Series Classification" 28 (28): 162-169, 2017

      25 Vergilio, M. M, "Comparative Sensory and Instrumental Analyses and Principal Components of Commercial Sunscreens" 2021

      26 Baki, G., "Application of Check-all-that-apply (CATA) Questions for Sensory Characterization of Cosmetic Emulsions by Untrained Consumers" 69 (69): 83-100, 2018

      27 Nakano, K., "A Neural Network Approach to Predict Tactile Comfort of Applying Cosmetic Foundation" 43 (43): 1978-1990, 2010

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-11-29 학회명변경 영문명 : 미등록 -> KOREAN SOCIETY OF INDUSTRIAL AND SYSTEMS ENGINEERING KCI등재
      2021-11-25 학술지명변경 외국어명 : Journal of Society of Korea Industrial and Systems Engineering -> Journal of Korean Society of Industrial and Systems Engineering KCI등재
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-12-04 학술지명변경 한글명 : 산업경영시스템학회지 -> 한국산업경영시스템학회지
      외국어명 : Journal of the Society of Korea Industrial and Systems Engineering -> Journal of Society of Korea Industrial and Systems Engineering
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.34 0.34 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.28 0.37 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼