RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Freeze–thaw processes degrade post‐fire water repellency in wet soils

      한글로보기

      https://www.riss.kr/link?id=O113109804

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2020년

      • 작성언어

        -

      • Print ISSN

        0885-6087

      • Online ISSN

        1099-1085

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        5229-5241   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration whilst increasing erosion and flooding from post‐fire rainfall. Post‐fire soil water repellency degrades over time, often in response to repeated wetting and drying of the soil. However, in mountainous fire‐prone forests such as those in the Western USA, the fire season often terminates in a cold and wet winter, during which soils not only wet and dry, but also freeze and thaw. Little is known about the effect of repeated freezing and thawing of soil on the breakdown of post‐fire hydrophobicity. This study characterized the changes in hydrophobicity of Sierra Nevada mountain soils exposed to different combinations of wet–dry and freeze–thaw cycling. Following each cycle, hydrophobicity was measured using the Molarity of Ethanol test. Hydrophobicity declined similarly across all experiments that included a wetting cycle. Repeated freezing and thawing of dry soil did not degrade soil water repellency, but freeze–thaw cycles decreased hydrophobicity in wet soils. Total soil organic matter content was not different between soils of contrasting hydrophobicity. Macroscopic changes such as fissures and cracks were observed to form as soil hydrophobicity decayed. Microscopic changes revealed by scanning electron microscope imagery suggest different levels of soil aggregation occurred in samples with distinct hydrophobicities, although the size of aggregates was not clearly correlated to the change in water repellency due to wet–dry and freeze–thaw cycling. A 9‐year climate and soil moisture record from Providence Critical Zone Observatory was combined with the laboratory results to estimate that hydrophobicity would persist an average of 144 days post‐fire at this well‐characterized, typical mid‐elevation Sierra Nevada site. Most of the breakdown in soil water repellency (79%) under these climate conditions would be attributable to freeze–thaw cycling, underscoring the importance of this process in soil recovery from fire in the Sierra Nevada.
      Hydrophobic wet, but not dry, soils subjected to freeze–thaw cycles decrease in hydrophobicity at similar rates to soils subjected to wetting and drying cycles only. Over a 9‐year weather station record at a midelevation Sierra Nevada site, post‐fire soil hydrophobicity is expected to decrease to pre‐fire levels in 144 days. Freeze–thaw cycles are responsible for 79% of this decrease.
      번역하기

      Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration whilst increasing erosion and flooding from post‐fire rainfall. Post‐fire soil water repellency degrades over time, often in response to repeated wetting a...

      Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration whilst increasing erosion and flooding from post‐fire rainfall. Post‐fire soil water repellency degrades over time, often in response to repeated wetting and drying of the soil. However, in mountainous fire‐prone forests such as those in the Western USA, the fire season often terminates in a cold and wet winter, during which soils not only wet and dry, but also freeze and thaw. Little is known about the effect of repeated freezing and thawing of soil on the breakdown of post‐fire hydrophobicity. This study characterized the changes in hydrophobicity of Sierra Nevada mountain soils exposed to different combinations of wet–dry and freeze–thaw cycling. Following each cycle, hydrophobicity was measured using the Molarity of Ethanol test. Hydrophobicity declined similarly across all experiments that included a wetting cycle. Repeated freezing and thawing of dry soil did not degrade soil water repellency, but freeze–thaw cycles decreased hydrophobicity in wet soils. Total soil organic matter content was not different between soils of contrasting hydrophobicity. Macroscopic changes such as fissures and cracks were observed to form as soil hydrophobicity decayed. Microscopic changes revealed by scanning electron microscope imagery suggest different levels of soil aggregation occurred in samples with distinct hydrophobicities, although the size of aggregates was not clearly correlated to the change in water repellency due to wet–dry and freeze–thaw cycling. A 9‐year climate and soil moisture record from Providence Critical Zone Observatory was combined with the laboratory results to estimate that hydrophobicity would persist an average of 144 days post‐fire at this well‐characterized, typical mid‐elevation Sierra Nevada site. Most of the breakdown in soil water repellency (79%) under these climate conditions would be attributable to freeze–thaw cycling, underscoring the importance of this process in soil recovery from fire in the Sierra Nevada.
      Hydrophobic wet, but not dry, soils subjected to freeze–thaw cycles decrease in hydrophobicity at similar rates to soils subjected to wetting and drying cycles only. Over a 9‐year weather station record at a midelevation Sierra Nevada site, post‐fire soil hydrophobicity is expected to decrease to pre‐fire levels in 144 days. Freeze–thaw cycles are responsible for 79% of this decrease.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼