RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Lift characteristics of pitching NACA0015 airfoil due to unsteady forced surface inflation

      한글로보기

      https://www.riss.kr/link?id=A103789172

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The purpose of this work is to investigate the unsteady forced surface inflating (UFSI) effect on lift coefficient of a pitching airfoil.

      Thus, 2D unsteady compressible flow around a pitching airfoil is analyzed by means of coarse grid CFD (CGCFD) method and springdynamic grids network. At first to validate the code for moving boundary cases, the predicted lift coefficient of pitching airfoil is comparedwith experiments. Simultaneously, the CGCFD results are compared with the RANS simulation. Then UFSI is added to the pitchingairfoil. The effects of unsteady parameters such as the inflation amplitude and phase difference between pitching and inflation is investigatedon lift and pressure coefficients of pitching airfoil. According to the results, UFSI, with zero degree phase difference betweenpitching and inflation, help to postpone the dynamic stall.
      번역하기

      The purpose of this work is to investigate the unsteady forced surface inflating (UFSI) effect on lift coefficient of a pitching airfoil. Thus, 2D unsteady compressible flow around a pitching airfoil is analyzed by means of coarse grid CFD (CGCFD) me...

      The purpose of this work is to investigate the unsteady forced surface inflating (UFSI) effect on lift coefficient of a pitching airfoil.

      Thus, 2D unsteady compressible flow around a pitching airfoil is analyzed by means of coarse grid CFD (CGCFD) method and springdynamic grids network. At first to validate the code for moving boundary cases, the predicted lift coefficient of pitching airfoil is comparedwith experiments. Simultaneously, the CGCFD results are compared with the RANS simulation. Then UFSI is added to the pitchingairfoil. The effects of unsteady parameters such as the inflation amplitude and phase difference between pitching and inflation is investigatedon lift and pressure coefficients of pitching airfoil. According to the results, UFSI, with zero degree phase difference betweenpitching and inflation, help to postpone the dynamic stall.

      더보기

      참고문헌 (Reference)

      1 A. Ysasi, "Wake structure of a deformable Joukowski airfoil" 240 : 1574-1582, 2011

      2 J. Steinhoff, "Vorticity confinement: A new technique for computing vortex dominated flows, Frontiers of Computational Fluid Dynamics" J. Wiley & Sons 1994

      3 A. Seifert, "Use of piezoelectric actuators for airfoil separation control" 36 : 1535-, 1998

      4 T. Lee, "Unsteady airfoil with a harmonically deflected trailing-edge flap" 27 : 1411-1424, 2011

      5 K. Nakahashi, "Three dimensional adaptive grid method" 24 : 948-954, 1999

      6 W. Dietz, "The development of a CFD based model of dynamic stall" 2004

      7 S. Michelin, "Resonance and propulsion performance of a heaving flexible wing" 21 : 2009

      8 K. Ou, "Optimization of flow past a moving deformable airfoil using spectral difference method" AIAA 3719-, 2011

      9 A. Jameson, "Numerical solutions of the euler equations by finite volume methods using Runge-Kutta time-stepping schemes" 81 : 1259-, 1981

      10 신상묵, "Numerical simulation of fluid-structure interaction of a moving flexible foil" 대한기계학회 22 (22): 2542-2553, 2008

      1 A. Ysasi, "Wake structure of a deformable Joukowski airfoil" 240 : 1574-1582, 2011

      2 J. Steinhoff, "Vorticity confinement: A new technique for computing vortex dominated flows, Frontiers of Computational Fluid Dynamics" J. Wiley & Sons 1994

      3 A. Seifert, "Use of piezoelectric actuators for airfoil separation control" 36 : 1535-, 1998

      4 T. Lee, "Unsteady airfoil with a harmonically deflected trailing-edge flap" 27 : 1411-1424, 2011

      5 K. Nakahashi, "Three dimensional adaptive grid method" 24 : 948-954, 1999

      6 W. Dietz, "The development of a CFD based model of dynamic stall" 2004

      7 S. Michelin, "Resonance and propulsion performance of a heaving flexible wing" 21 : 2009

      8 K. Ou, "Optimization of flow past a moving deformable airfoil using spectral difference method" AIAA 3719-, 2011

      9 A. Jameson, "Numerical solutions of the euler equations by finite volume methods using Runge-Kutta time-stepping schemes" 81 : 1259-, 1981

      10 신상묵, "Numerical simulation of fluid-structure interaction of a moving flexible foil" 대한기계학회 22 (22): 2542-2553, 2008

      11 W. Geissler, "Numerical investigation of dynamic stall control by a Nose-Drooping device" American Helicopter Society 23-25, 2002

      12 Y. Lian, "Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil" 45 (45): 2007

      13 F. K. Straub, "Design of a smart material actuator for rotor control" 6 : 26-34, 1997

      14 M. S. Chandrasekhara, "Control of flow separation using adaptive airfoils" 1997

      15 J. Steinhoff, "Computing blunt body flows on coarse grids using vorticity confinement" 124 : 876-886, 2002

      16 D. Rival, "Characteristics of pitching and plunging airfoils under dynamic-stall conditions" 47 (47): 2010

      17 J. W. Clement, "Bench-top characterization of an active rotor blade flap system incorporating c-block actuators" AIAA 98 : 2108-, 1998

      18 W. E. Dietz, "Application of vorticity confinement to compressible flow" 2004

      19 R. A. Piziali, "An experimental investigation of 2D end 3D oscillating wing aerodynamics for a range of angle of attack including stall" Chalmers University of Technology 1993

      20 D. Munday, "Active control of separation on a wing with oscillating camber" 39 (39): 2002

      21 M. Moulton, "A technique for the simulation of stall with coarse-grid CFD" AIAA 2000

      22 H. Aono, "A computational and experimental study of flexible flapping wing aerodynamics" 2010

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼