RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Si 기판을 이용한 SOI MOSFET 제작 = SOI MOSFET fabrication using Si substrate

      한글로보기

      https://www.riss.kr/link?id=T13555892

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As the effective channel length of Si device is shrinking, the devices have faced problems such as increased leakage current, threshold voltage roll-off, and degradation of sub-threshold slope. Thus, MOSFET on thin Si body on insulator (SOI) has widely been utilized in past decade to reduce these short channel effects. In this study, we report on the fabrication results of a deep sub-micron MOSFET after converting a bulk Si substrate into SOI type structure as an alternative of SOI wafer.
      In order to separate thin top Si active layer from the underlying substrate, we processed the steps of channel definition, deep trench etch at both sides of channel, and thermal oxidation from the sides. The cross-sectional TEM examination indicated a SOI structure: V-shaped active layer with thickness less than 0.1μm floating on SiO2. Further fabrication processes of self-aligned S,D implant and contact formation yielded a sub-micron MOSFET. The device's threshold voltage with W/L=180nm/165nm was 0.22V, and the sub-threshold slope was unexpectedly large as 250mV/dec. The Id-Vd exhibited a linear relationship with variation of Vg due to the carrier velocity saturation in a sub-mircon MOSFET: . The device had also suffered from DIBL(Drain-Induced Barrier Lowering), showing the increased Id at high Vds with barrier lowering effect of ▵V ~ 630mV/V.
      Overall device performance was not outstanding probably inherited to the unscaled oxide thickness, tox=10nm, and the sidewall interface states in oxides surrounding the channel.
      It is however very meaningful that the SOI type structure was realized by using conventional bulk Si wafer and implemented for a sub-micron MOSFET.
      번역하기

      As the effective channel length of Si device is shrinking, the devices have faced problems such as increased leakage current, threshold voltage roll-off, and degradation of sub-threshold slope. Thus, MOSFET on thin Si body on insulator (SOI) has widel...

      As the effective channel length of Si device is shrinking, the devices have faced problems such as increased leakage current, threshold voltage roll-off, and degradation of sub-threshold slope. Thus, MOSFET on thin Si body on insulator (SOI) has widely been utilized in past decade to reduce these short channel effects. In this study, we report on the fabrication results of a deep sub-micron MOSFET after converting a bulk Si substrate into SOI type structure as an alternative of SOI wafer.
      In order to separate thin top Si active layer from the underlying substrate, we processed the steps of channel definition, deep trench etch at both sides of channel, and thermal oxidation from the sides. The cross-sectional TEM examination indicated a SOI structure: V-shaped active layer with thickness less than 0.1μm floating on SiO2. Further fabrication processes of self-aligned S,D implant and contact formation yielded a sub-micron MOSFET. The device's threshold voltage with W/L=180nm/165nm was 0.22V, and the sub-threshold slope was unexpectedly large as 250mV/dec. The Id-Vd exhibited a linear relationship with variation of Vg due to the carrier velocity saturation in a sub-mircon MOSFET: . The device had also suffered from DIBL(Drain-Induced Barrier Lowering), showing the increased Id at high Vds with barrier lowering effect of ▵V ~ 630mV/V.
      Overall device performance was not outstanding probably inherited to the unscaled oxide thickness, tox=10nm, and the sidewall interface states in oxides surrounding the channel.
      It is however very meaningful that the SOI type structure was realized by using conventional bulk Si wafer and implemented for a sub-micron MOSFET.

      더보기

      목차 (Table of Contents)

      • Ⅰ. 서 론 1
      • Ⅰ-1. 연구의 목적 1
      • Ⅰ-2. 연구의 배경 및 연구방법과 범위 2
      • Ⅰ-2-1. 연구의 배경 2
      • Ⅰ-2-2. 연구방법과 범위 3
      • Ⅰ. 서 론 1
      • Ⅰ-1. 연구의 목적 1
      • Ⅰ-2. 연구의 배경 및 연구방법과 범위 2
      • Ⅰ-2-1. 연구의 배경 2
      • Ⅰ-2-2. 연구방법과 범위 3
      • Ⅱ. 이론적 배경 6
      • Ⅱ-1. SOI형 구조의 정의 및 특징 6
      • Ⅱ-1-1. SOI형 구조의 정의 6
      • Ⅱ-1-2. SOI형 구조의 특징 및 장단점 8
      • Ⅱ-1-2-1. 고속 동작 8
      • Ⅱ-1-2-2. 저 전력 소모 8
      • Ⅱ-1-2-3. 래치 업(Latch-Up) 방지 10
      • Ⅱ-1-2-4. 낮은 SER(Soft Error Rate) 11
      • Ⅱ-1-2-5. SOI형 구조의 단점과 한계 12
      • Ⅱ-2. SOI형 구조의 제작방법 14
      • Ⅱ-2-1. SIMOX(Separation by Implanted Oxygen) 공정 14
      • Ⅱ-2-2. 스마트 컷(Smart-Cut) 공정 15
      • Ⅲ. SOI형 구조형성 및 MOSFET 소자제작 16
      • Ⅲ-1. SOI형 구조형성 16
      • Ⅲ-1-1. 마스크 필름 증착 공정 16
      • Ⅲ-1-2. 마스크 필름 패터닝 공정 17
      • Ⅲ-1-3. 활성 층 형성을 위한 Si 식각 공정 18
      • Ⅲ-1-4. Bosch 공정을 통한 등방성 Si 식각 공정 19
      • Ⅲ-1-5. 상부 Si을 분리하기 위한 산화 공정 21
      • Ⅲ-1-6. Gap-fill 및 CMP 공정 22
      • Ⅲ-2. SOI형 MOSFET 소자제작 24
      • Ⅲ-2-1. 하드 마스크 필름 제거 및 바디 이온주입 공정 24
      • Ⅲ-2-2. 게이트 필름 증착 공정 25
      • Ⅲ-2-3. 게이트 패터닝 형성 공정 25
      • Ⅲ-2-4. 게이트 spacer 형성 공정 26
      • Ⅲ-2-5. N+ 소오스/드레인 형성 공정 27
      • Ⅲ-2-6. 소오스/드레인 금속 접합 패드 형성 공정 27
      • Ⅳ. MOSFET 소자제작 결과 30
      • Ⅳ-1. 문턱전압 특성 30
      • Ⅳ-2. S-Factor 특성 32
      • Ⅳ-3. DIBL 특성 35
      • Ⅳ-4. 게이트 전압에 따른 Ids-Vds 특성 36
      • Ⅴ. 결론 및 고찰 41
      • 참고문헌 44
      • 감사의 글 47
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼