RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A primer to the theory of critical phenomena

      한글로보기

      https://www.riss.kr/link?id=M15067265

      • 저자
      • 발행사항

        Amsterdam: Elsevier, 2018

      • 발행연도

        2018

      • 작성언어

        영어

      • 주제어
      • DDC

        530.474 판사항(22)

      • ISBN

        9780128046852 (pbk.)

      • 자료형태

        일반단행본

      • 발행국(도시)

        네덜란드

      • 서명/저자사항

        A primer to the theory of critical phenomena / Jurgen M. Honig, Jozef Spalek.

      • 형태사항

        xi, 242 p.: ill.; 23 cm.

      • 일반주기명

        Includes bibliographical references (p. 237) and index.

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 동국대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • Preface = xi
      • 1. Introduction : Classical Phases and Critical Points
      • 1.1 Physical Examples : Macroscopic Properties = 1
      • 1.2 Singularity of the Specific Heat = 6
      • CONTENTS
      • Preface = xi
      • 1. Introduction : Classical Phases and Critical Points
      • 1.1 Physical Examples : Macroscopic Properties = 1
      • 1.2 Singularity of the Specific Heat = 6
      • 1.3 Remarks = 8
      • 2. The Ising Model and Its Basic Characteristics in the Mean Field Approximation
      • 2.1 The Ising Model and Its Hamiltonian = 9
      • 2.2 The Ising Partition Function and Free Energy = 11
      • 2.3 Equilibrium Conditions and Thermodynamics = 13
      • 2.4 Elementary Consequences of the Model = 15
      • 2.5 Discussion : Critical Exponents = 18
      • 2.6 The Meaning of the Ising Model and Mean Field Theory = 20
      • 2.7 Problem 2.1 : Numerical Checkout = 20
      • 2.8 Problem 2.2 : A Physical Estimate of Tc-Ordering Energy vs. Entropy = 22
      • Appendix 2.A : Primer in Statistical Physics-A Summary = 22
      • 2.A.1 Principles of Thermodynamics (Thermostatics) = 22
      • 2.A.2 Connection to Statistical Physics = 24
      • 2.A.3 Elementary Example : Statistical Distribution Function for Quantum Multiparticle System : Fermions and Bosons = 26
      • 2.A.4 Outlook = 28
      • 2.A.5 Final Note = 29
      • Appendix 2.B : Expansion of Eq. (2.5) in Powers of M = 29
      • 3. General Mean Field Approach
      • 3.1 The Heisenberg Model and the Mean Field Approximation = 31
      • 3.2 Critical Phenomena in the Mean Field Approximation : A Further Elaboration = 32
      • 3.3 Van der Waals Equation of State and Criticality* = 37
      • 3.4 Density Fluctuations and Compressibility = 42
      • 3.5 Mean Field Theory for Binary Mixtures* = 44
      • Appendix 3.A : Useful Relations Related to the van der Waals Equation = 52
      • Appendix 3.B : Definition of Correlation Functions = 52
      • Appendix 3.C : Gibbs--Duhem Rules = 53
      • Appendix 3.D : Formula for the Entropy Part in Eq. (3.61) = 54
      • 4. The Landau Theory of Phase Transitions : General Concept and Its Microscopic Relation to Mean Field Theory
      • 4.1 Concept of the Order Parameter = 55
      • 4.2 Spin Magnetism : Microscopic Derivation of the Landau Theory with Spatial Fluctuations of the Order Parameter* = 67
      • 4.2.1 The Concept of Exchange Fields and Ferromagnetism = 67
      • 4.2.2 The Appearance of the Gradient Term = 70
      • 4.2.3 Formal Equivalence of the Landau Expansion and the Mean-field Approach = 72
      • 4.2.4 Landau Theory of the Ferromagnetic Transition = 75
      • Supplement: Zero-field Susceptibility in the Ferromagnetic Phase = 77
      • 4.2.5 Mean-field Theory for Two-sublattice Antiferromagnets = 77
      • 4.3 Rotationally Invariant Form of the Landau Functional = 79
      • 4.4 Outlook : Meaning of Mean Field Theory = 80
      • Problem 4.1 : A Simple Physical Example of a Continuous Phase Transition: Order-disorder Transformation = 81
      • Problem 4.2 : The Entropy and a Continuous Phase Transition for AB Alloys = 83
      • 4.5 Historical Note : Order of the Phase Transition = 84
      • 5. More General Considerations Concerning Mean Field Theory : The Stratonovich - Hubbard Transformation*
      • 5.1 General Form of the Partition Function for the Ising Model = 87
      • 5.2 The Upper Critical Dimension = 89
      • 5.3 Appendix : Derivation of Eq. (5.4) = 90
      • 6. Generalities Relating to the Study of Critical Phenomena
      • 6.1 Introduction = 93
      • 6.2 Scaling Procedures: Kadanoff Blocks = 94
      • 6.3 Operations in Reciprocal Space = 95
      • 6.4 Utility of Algebraic Power Laws = 96
      • 6.5 Homogeneous Functions = 97
      • 6.6 Fixed Points = 98
      • 6.7 Appendix : A Simple Example = 99
      • 7. Failure of Mean Field Theory and Scaling Methods
      • 7.1 Kadanoff Scaling = 101
      • 7.2 Properties of the Homogeneous Equation = 103
      • 7.3 Scaling Laws for Second Derivatives = 105
      • 7.4 Summary and Remarks = 107
      • 7.5 Appendix A : Scaling Law for the Chemical Potential = 108
      • 8. Kadanoff Scaling
      • 8.1 Example Involving a Ring = 111
      • 8.2 The Case of Two Dimensions = 115
      • 8.3 Rescaling of the Triangular Lattice = 118
      • 8.4 Determination of Averaged Perturbation Potentials = 120
      • 8.5 Determination of the Fixed Point = 121
      • 9. The Renormalization Group Operations
      • 9.1 Real Space Renormalization = 123
      • 9.2 Renormalization of the Hamiltonian = 124
      • 9.3 Tracking Parametric Changes During Coarse Graining = 124
      • 9.4 An Example = 125
      • 9.5 Croup Properties of the Coarse Graining Operation = 127
      • 9.6 Scaling Fields and Properties = 128
      • 9.7 Classification of Variables and Related Fixed Points = 128
      • 9.8 Back to Homogeneity Relations = 130
      • 9.9 Consequences = 132
      • Appendix A = 135
      • Examples = 135
      • 10. Additional Interrelations Between Critical Exponents
      • 10.1 Magnetization and Correlation Effects = 139
      • 10.2 Effect of Applied Magnetic Fields = 140
      • 10.3 Magnetization Close to the Critical Temperature = 141
      • 10.4 Magnetic Susceptibility Near the Critical Temperature = 142
      • 10.5 Heat Capacity = 142
      • 10.6 Summary = 144
      • 11. Extension of the Landau Approach to Inhomogeneous Systems and the Physical Picture of Gaussian Fluctuations
      • 11.1 Smoothing Operations = 147
      • 11.2 Use of Functional Integrals = 149
      • Interpretation of the Formalism = 150
      • 11.3 Rock-Bottom Approximation = 151
      • 11.4 Fourier Transforms and Scaling in Reciprocal Space = 151
      • 11.5 Extension : The Ginsburg-Landau Functional in a Rotationally Invariant Case = 153
      • 11.6 A Concrete Example : Gaussian Fluctuations and the Ginzburg Criterion = 154
      • 12. The Ginzburg-Landau Functional for a Continuous System: Formal Approach to Gaussian Fluctuations
      • 12.1 Gaussian Integrals = 159
      • 12.2 Partition Function for the Gaussian Model = 161
      • 12.3 Operations in k Space = 162
      • 12.4 Partition Function = 164
      • 12.5 Correlation Functions = 165
      • 12.6 Comment = 167
      • 12.7 Renormalization of the Hamiltonian = 168
      • 12.8 Establishing the Requirements of the Fixed Point = 168
      • 12.9 Conclusion = 169
      • Appendix 12.A : Hubbard-Stratonovich Transformation = 169
      • Appendix 12.B : Relation
      • ▽ₓΦ
      • ²=-Φ▽²Φ = 170
      • Appendix 12.C : Comment on Functional Integration = 171
      • Appendix 12.D : Meaning of Functional (Variational) Derivatives = 172
      • 13. The Ginzburg--Landau--Wilson Formalism: Beyond the Gaussian Approximation
      • 13.1 Generalities = 175
      • 13.2 The RGT Execution = 176
      • 13.3 Rescaling Effects = 178
      • 13.4 Case d > 4 = 178
      • 13.5 Case d < 4 = 180
      • 13.6 Determination of the Fixed Point = 181
      • 13.7 Case d=4 = 183
      • Appendix 13.A = 184
      • 14. Correlation Functions
      • 14.1 Correlations Involving Lattice Sites = 185
      • 14.2 Correlations in the Continuum Limit = 187
      • 14.3 Specification of the Two-Point Connected Correlation Function = 188
      • 14.4 Correlations in Direct Space = 190
      • Appendix 14.A : Functional Derivatives = 192
      • Appendix 14.B : Evaluation of Correlation Function in Direct Space for Three Dimensions = 193
      • 15. Beyond the Landau Model
      • 15.1 Basics = 195
      • 15.2 The Generating Functional for Establishing Correlations = 197
      • 15.3 The Two-Point Correlation Function = 199
      • 15.4 Postscript = 200
      • Appendix 15. A Anomalous Dimension of φ = 200
      • 16. An Elementary Examination of Quantum Phase Transitions Involving Fermions*
      • 16.1 Introduction : Factors Determining a Continuous Quantum Phase Transition = 203
      • 16.2 Example : The Mott-Wigner Criterion for the Electron Gas Instability = 205
      • 16.3 Localization on a Lattice : The Hubbard Model = 207
      • 16.4 Detailed Discussion of Localization of Fermions : Quantum Critical Points = 209
      • 16.5 Quasiparticle Representation of Interacting Electron Systems : From Classical to Quantum Critical Points = 212
      • 16.6 Quantum Phase Transition : A Generalized Landau-Hertz Functional = 216
      • Formal Remark = 217
      • 16.7 An Example = 218
      • 16.8 Concluding Remark = 219
      • 17. Supplement : Going Beyond the Gaussian Formulation
      • 17.1 Method 1 : Two-point Correlation Functions = 221
      • 17.2 Method 2 : The Generating Functional for Establishing Correlations for a Single Variable = 224
      • 17.2.1 Extension to n Variables = 225
      • 17.2.2 Contractions and Wick's Theorem = 226
      • 17.2.3 Correlation Functions Involving a Single Variable = 227
      • 17.2.4 Determination of Ginzburg-Landau-type Correlation Functions for Several Variables : Brief Introduction to Feynman Diagrams = 228
      • 17.2.5 Illustration of the Use of Feynman Diagrams = 230
      • 17.2.6 Second-order Expansion = 231
      • 17.2.7 Summary = 233
      • 17.2.8 Postscript = 233
      • 17.2.9 Appendix = 233
      • 17.3 Exercises = 234
      • Bibliography = 237
      • Index = 239
      더보기

      온라인 도서 정보

      온라인 서점 구매

      온라인 서점 구매 정보
      서점명 서명 판매현황 종이책 전자책 구매링크
      정가 판매가(할인율) 포인트(포인트몰)
      알라딘

      A Primer to the Theory of Critical Phenomena (Paperback)

      판매중 88,030원 72,180원 (18%)

      종이책 구매

      3,610포인트
      예스24.com

      A Primer to the Theory of Critical Phenomena

      판매중 88,030원 79,220원 (10%)

      종이책 구매

      3,970포인트 (5%)
      • 포인트 적립은 해당 온라인 서점 회원인 경우만 해당됩니다.
      • 상기 할인율 및 적립포인트는 온라인 서점에서 제공하는 정보와 일치하지 않을 수 있습니다.
      • RISS 서비스에서는 해당 온라인 서점에서 구매한 상품에 대하여 보증하거나 별도의 책임을 지지 않습니다.

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼