This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a...
This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.