RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Recent Progress in Rapid Biosensor Fabrication Methods: Focus on Electrical Potential Application

      한글로보기

      https://www.riss.kr/link?id=A109007594

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The coronavirus disease pandemic has led to an urgent need for rapid and accurate viral diagnosis. Therefore, rapid biosen- sors, not only for viruses but also for the detection of bacteria, disease diagnosis, and environmental monitoring, have been a...

      The coronavirus disease pandemic has led to an urgent need for rapid and accurate viral diagnosis. Therefore, rapid biosen- sors, not only for viruses but also for the detection of bacteria, disease diagnosis, and environmental monitoring, have been actively researched. Biosensors analyze the binding of biomolecules and target substances mainly based on electrochemical, electrical, or optical methods. To achieve precise and rapid diagnosis, it is crucial to reduce the time required for biomolecule– target substance binding. Typically, biomolecules reach the target substances through random diffusion, and to overcome the limitations associated herewith, biosensors have been integrated with alternating current (AC) electrokinetics (ACEK) technology. ACEK, through the application of alternating voltages, converts electrical energy into fluid motion, inducing pumping, mixing, concentration, and separation of the fluid. Its low power consumption makes it highly promising as a point-of-care diagnostic device. In this paper, we review the advancements in three ACEK technologies: AC electrothermal flow, AC electro-osmosis, and AC di-electrophoresis, to discuss the development of rapid biosensor fabrication methods based on electrical potential applications.

      더보기

      다국어 초록 (Multilingual Abstract)

      The coronavirus disease pandemic has led to an urgent need for rapid and accurate viral diagnosis. Therefore, rapid biosen- sors, not only for viruses but also for the detection of bacteria, disease diagnosis, and environmental monitoring, have been a...

      The coronavirus disease pandemic has led to an urgent need for rapid and accurate viral diagnosis. Therefore, rapid biosen- sors, not only for viruses but also for the detection of bacteria, disease diagnosis, and environmental monitoring, have been actively researched. Biosensors analyze the binding of biomolecules and target substances mainly based on electrochemical, electrical, or optical methods. To achieve precise and rapid diagnosis, it is crucial to reduce the time required for biomolecule– target substance binding. Typically, biomolecules reach the target substances through random diffusion, and to overcome the limitations associated herewith, biosensors have been integrated with alternating current (AC) electrokinetics (ACEK) technology. ACEK, through the application of alternating voltages, converts electrical energy into fluid motion, inducing pumping, mixing, concentration, and separation of the fl uid. Its low power consumption makes it highly promising as a point-of-care diagnostic device. In this paper, we review the advancements in three ACEK technologies: AC electrothermal flow, AC electro-osmosis, and AC di-electrophoresis, to discuss the development of rapid biosensor fabrication methods based on electrical potential applications.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼