RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Crystal violet as CMOS-compatible alkali-free promoter for CVD growth of MoSe2 monolayers: Comparative surface analysis with alkali-based promoter

      한글로보기

      https://www.riss.kr/link?id=A108566141

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The wafer-level growth of transition metal dichalcogenides (TMDs) using chemical vapor deposition (CVD) is essential for industrial applications involving complementary metal-oxide-semiconductor (CMOS) processes. In the CVD processes of TMDs, promoters containing alkali elements such as Na and K are typically used to obtain high-quality crystals. However, the use of alkali elements is rigorously restricted in CMOS processes because of contamination problems. In this study, we investigated crystal violet (CV) as a promising alkali-free promoter in the CVD growth of MoSe2. Particularly, the surface properties were intensively examined by optical, chemical, and topographical analyses and compared to those of samples prepared with NaOH as a representative alkali-based promoter. Na residues causing a doping effect were observed in the NaOH process, whereas the doping effect was negligible in the CV process. After the transfer process from the as-grown state, the strain effect in the NaOH process was prominently changed, resulting in wrinkles on MoSe2, whereas the wrinkles were negligible in the CV process, suggesting relatively smaller strain accumulation in the CV process during crystal growth. Our results showed the feasibility of CV as an alkali-free promoter for utilizing CVD-grown TMDs in industrial CMOS processes.
      번역하기

      The wafer-level growth of transition metal dichalcogenides (TMDs) using chemical vapor deposition (CVD) is essential for industrial applications involving complementary metal-oxide-semiconductor (CMOS) processes. In the CVD processes of TMDs, promoter...

      The wafer-level growth of transition metal dichalcogenides (TMDs) using chemical vapor deposition (CVD) is essential for industrial applications involving complementary metal-oxide-semiconductor (CMOS) processes. In the CVD processes of TMDs, promoters containing alkali elements such as Na and K are typically used to obtain high-quality crystals. However, the use of alkali elements is rigorously restricted in CMOS processes because of contamination problems. In this study, we investigated crystal violet (CV) as a promising alkali-free promoter in the CVD growth of MoSe2. Particularly, the surface properties were intensively examined by optical, chemical, and topographical analyses and compared to those of samples prepared with NaOH as a representative alkali-based promoter. Na residues causing a doping effect were observed in the NaOH process, whereas the doping effect was negligible in the CV process. After the transfer process from the as-grown state, the strain effect in the NaOH process was prominently changed, resulting in wrinkles on MoSe2, whereas the wrinkles were negligible in the CV process, suggesting relatively smaller strain accumulation in the CV process during crystal growth. Our results showed the feasibility of CV as an alkali-free promoter for utilizing CVD-grown TMDs in industrial CMOS processes.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼