RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Xylose 기질을 소모하는 재조합 Saccharomyces cerevisiae의 lactic acid 생산수율 향상을 위한 조건 탐색

      한글로보기

      https://www.riss.kr/link?id=A106948866

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Lactic acid is widely used in the food, pharmaceutical, textile and chemical industries. Also, poly-lactic acid (PLA) is in increasing demand as an environmentally friendly and biodegradable plastic. In our prior study, a lactic acid-producing, xylose...

      Lactic acid is widely used in the food, pharmaceutical, textile and chemical industries. Also, poly-lactic acid (PLA) is in increasing demand as an environmentally friendly and biodegradable plastic. In our prior study, a lactic acid-producing, xylose-fermenting Saccharomyces cerevisiae strain (SR8 LDH) has been developed. In the present study, we tested the SR8 LDH strain under various fermentation conditions to discover the most important condition determining lactic acid and ethanol production profiles. Using xylose as a substrate significantly improved lactic acid yields compared to using glucose under microaerobic conditions. High initial cell density improved lactic acid productivity, but it did not affect ethanol production. Lastly, when fermenting xylose, the PDC1 gene encoding pyruvate decarboxylase was transcriptionally repressed, which might be associated with the production of low ethanol and high lactic acid. These results indicate that the type of a carbon source, i.e. using xylose instead of glucose could be a promising solution for lactic acid production by engineered S. cerevisiae.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
      • 3. RESULTS AND DISCUSSION
      • 4. CONCLUSION
      • Abstract
      • 1. INTRODUCTION
      • 2. MATERIALS AND METHODS
      • 3. RESULTS AND DISCUSSION
      • 4. CONCLUSION
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 Novy, V., "l-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae : aeration and carbon source influence yields and productivities" 17 : 59-, 2018

      2 Verbelen, P., "The role of oxygen in yeast metabolism during high cell density brewery fermentations" 82 : 1143-1156, 2009

      3 Ghaffar, T., "Recent trends in lactic acid biotechnology : a brief review on production to purification" 7 : 222-229, 2014

      4 Kim, S. R., "Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae" 8 : e57048-, 2013

      5 Yun, E. J., "Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass" 11 : 140-, 2018

      6 Bustamante, D., "Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate by Lactic Acid Bacteria" 6 : 1-, 2020

      7 Singhvi, M., "Poly-Lactic acid(PLA) : synthesis and biomedical applications" 127 : 1612-1626, 2019

      8 Jamshidian, M., "Poly-Lactic Acid : production, applications, nanocomposites, and release studies" 9 : 552-571, 2010

      9 Sauer, M., "Microbial production of organic acids : expanding the markets" 26 : 100-108, 2008

      10 Baek, S. -H., "Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae" 100 : 2737-2748, 2016

      1 Novy, V., "l-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae : aeration and carbon source influence yields and productivities" 17 : 59-, 2018

      2 Verbelen, P., "The role of oxygen in yeast metabolism during high cell density brewery fermentations" 82 : 1143-1156, 2009

      3 Ghaffar, T., "Recent trends in lactic acid biotechnology : a brief review on production to purification" 7 : 222-229, 2014

      4 Kim, S. R., "Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae" 8 : e57048-, 2013

      5 Yun, E. J., "Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass" 11 : 140-, 2018

      6 Bustamante, D., "Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate by Lactic Acid Bacteria" 6 : 1-, 2020

      7 Singhvi, M., "Poly-Lactic acid(PLA) : synthesis and biomedical applications" 127 : 1612-1626, 2019

      8 Jamshidian, M., "Poly-Lactic Acid : production, applications, nanocomposites, and release studies" 9 : 552-571, 2010

      9 Sauer, M., "Microbial production of organic acids : expanding the markets" 26 : 100-108, 2008

      10 Baek, S. -H., "Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae" 100 : 2737-2748, 2016

      11 Turner, T. L., "Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion" 99 : 8023-8033, 2015

      12 Turner, T. L., "Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae" 113 : 1075-1083, 2016

      13 Skory, C. D., "Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene" 30 : 22-27, 2003

      14 Kim, J. -w., "Lactic Acid Production from a Whole Slurry of Acid-Pretreated Spent Coffee Grounds by Engineered Saccharomyces cerevisiae" 189 : 206-216, 2019

      15 Qi, Q., "Industrial Biorefineries &White Biotechnology" Elsevier 369-388, 2015

      16 Esteban, J., "Food waste as a source of valueadded chemicals and materials : a biorefinery perspective" 53 : 1095-1108, 2018

      17 Lin, C. -Y., "Fermentative hydrogen production from xylose using anaerobic mixed microflora" 31 : 832-840, 2006

      18 van Hoek, P., "Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast" 68 : 517-523, 2000

      19 Ae Jin Ryu, "Engineering of Saccharomyces cerevisiae for enhanced production of L-lactic acid by co-expression of acid-stable glycolytic enzymes from Picrophilus torridus" 한국화학공학회 35 (35): 1673-1679, 2018

      20 Kim, S. R., "Deletion of PHO13, Encoding Haloacid Dehalogenase Type IIA Phosphatase, Results in Upregulation of the Pentose Phosphate Pathway in Saccharomyces cerevisiae" 81 : 1601-1609, 2015

      21 Ishida, N., "D-Lactic acid production by metabolically engineered Saccharomyces cerevisiae" 101 : 172-177, 2006

      22 Shin, M., "Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis" 103 : 5435-5446, 2019

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-28 학술지명변경 한글명 : 한국생물공학회지 -> KSBB Journal
      외국어명 : Korean Journal of Biotechnology and Bioengineering -> Korean Society for Biotechnology and Bioengineering Journal
      KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.36 0.662 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼