RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Clinical Application of Artificial Intelligence in Breast MRI

      한글로보기

      https://www.riss.kr/link?id=A109629845

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Breast MRI is the most sensitive imaging modality for detecting breast cancer. However, its widespread use is limited by factors such as extended examination times, need for contrast agents, and susceptibility to motion artifacts. Artificial intelligence (AI) has emerged as a promising solution for these challenges by enhancing the efficiency and accuracy of breast MRI in multiple domains. AI-driven image reconstruction techniques have significantly reduced scan times while preserving image quality. This method outperforms traditional parallel imaging and compressed sensing. AI has also shown great promise for lesion classification and segmentation, with convolutional neural networks and U-Net architectures improving the differentiation between benign and malignant lesions. AI-based segmentation methods enable accurate tumor detection and characterization, thereby aiding personalized treatment planning. An AI triaging system has demonstrated the potential to streamline workflow efficiency by identifying low-suspicion cases and reducing the workload of radiologists. Another promising application is synthetic breast MR image generation, which aims to generate contrast enhanced images from non-contrast sequences, thereby improving accessibility and patient safety. Further research is required to validate AI models across diverse populations and imaging protocols. As AI continues to evolve, it is expected to play an important role in the optimization of breast MRI.
      번역하기

      Breast MRI is the most sensitive imaging modality for detecting breast cancer. However, its widespread use is limited by factors such as extended examination times, need for contrast agents, and susceptibility to motion artifacts. Artificial intellige...

      Breast MRI is the most sensitive imaging modality for detecting breast cancer. However, its widespread use is limited by factors such as extended examination times, need for contrast agents, and susceptibility to motion artifacts. Artificial intelligence (AI) has emerged as a promising solution for these challenges by enhancing the efficiency and accuracy of breast MRI in multiple domains. AI-driven image reconstruction techniques have significantly reduced scan times while preserving image quality. This method outperforms traditional parallel imaging and compressed sensing. AI has also shown great promise for lesion classification and segmentation, with convolutional neural networks and U-Net architectures improving the differentiation between benign and malignant lesions. AI-based segmentation methods enable accurate tumor detection and characterization, thereby aiding personalized treatment planning. An AI triaging system has demonstrated the potential to streamline workflow efficiency by identifying low-suspicion cases and reducing the workload of radiologists. Another promising application is synthetic breast MR image generation, which aims to generate contrast enhanced images from non-contrast sequences, thereby improving accessibility and patient safety. Further research is required to validate AI models across diverse populations and imaging protocols. As AI continues to evolve, it is expected to play an important role in the optimization of breast MRI.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼