Given a positive integer s, the s‐colour size‐Ramsey number of a graph H is the smallest integer m such that there exists a graph G with m edges with the property that, in any colouring of E(G) with s colours, there is a monochromatic copy of H. W...
Given a positive integer s, the s‐colour size‐Ramsey number of a graph H is the smallest integer m such that there exists a graph G with m edges with the property that, in any colouring of E(G) with s colours, there is a monochromatic copy of H. We prove that, for any positive integers k and s, the s‐colour size‐Ramsey number of the kth power of any n‐vertex bounded degree tree is linear in n. As a corollary, we obtain that the s‐colour size‐Ramsey number of n‐vertex graphs with bounded treewidth and bounded degree is linear in n, which answers a question raised by Kamčev, Liebenau, Wood and Yepremyan.