RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Synthesis from Molecule into 3D Polyamide 6 Microspheres Stacked Polyhedrons via Self‐Assembly

      한글로보기

      https://www.riss.kr/link?id=O119759219

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        1438-7492

      • Online ISSN

        1439-2054

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Self‐assembly provides the basis for a procedure used to organize larger objects into regular, 3D microsphere stacked polyhedrons. A novel approach is described for the fabrication of 3D structured micrometer‐scale polyhedrons which are packed with nanosized spheres in the order of 400 nm by in situ polymerization using phase inversion technology. The extended polyhedrons can assemble into decimeter‐level ordered materials. The side length of an individual polyhedron can be effectively tuned from 10 to 100 µm through several ways. This method realizes directly self‐assembly from molecule to regular extended polyhedrons materials. The process is primarily based on in situ anion polymerization of lactam in two‐phase system whose self‐assembly is driven by hydrogen bonds' force and polyethylene glycol stepwise crystallization synergistically. The results suggest that this strategy for self‐assembly can be applied to design nonplanar complex geometric structure materials. In the future, polyhedrons packed with microspheres may be possible to build more complex 3D, self‐assembly device modules for advanced materials.
      A novel approach is described for the preparation of 3D structured micrometer‐scale polyhedrons which are packed with nanosized PA6 spheres in the order of 400 nm by in situ polymerization using phase inversion technology. This method realizes directly from molecular self‐assembly to regular microsphere polyhedral materials under template‐free.
      번역하기

      Self‐assembly provides the basis for a procedure used to organize larger objects into regular, 3D microsphere stacked polyhedrons. A novel approach is described for the fabrication of 3D structured micrometer‐scale polyhedrons which are packed wit...

      Self‐assembly provides the basis for a procedure used to organize larger objects into regular, 3D microsphere stacked polyhedrons. A novel approach is described for the fabrication of 3D structured micrometer‐scale polyhedrons which are packed with nanosized spheres in the order of 400 nm by in situ polymerization using phase inversion technology. The extended polyhedrons can assemble into decimeter‐level ordered materials. The side length of an individual polyhedron can be effectively tuned from 10 to 100 µm through several ways. This method realizes directly self‐assembly from molecule to regular extended polyhedrons materials. The process is primarily based on in situ anion polymerization of lactam in two‐phase system whose self‐assembly is driven by hydrogen bonds' force and polyethylene glycol stepwise crystallization synergistically. The results suggest that this strategy for self‐assembly can be applied to design nonplanar complex geometric structure materials. In the future, polyhedrons packed with microspheres may be possible to build more complex 3D, self‐assembly device modules for advanced materials.
      A novel approach is described for the preparation of 3D structured micrometer‐scale polyhedrons which are packed with nanosized PA6 spheres in the order of 400 nm by in situ polymerization using phase inversion technology. This method realizes directly from molecular self‐assembly to regular microsphere polyhedral materials under template‐free.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼