RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Textbook of membrane biology

      한글로보기

      https://www.riss.kr/link?id=M15296882

      • 저자
      • 발행사항

        Singapore : Springer, [2017] ⓒ2017

      • 발행연도

        2017

      • 작성언어

        영어

      • 주제어
      • DDC

        571.64 판사항(23)

      • ISBN

        9789811071003
        9811071004
        9789811071010 (eBook)
        9811071012 (eBook)

      • 자료형태

        일반단행본

      • 발행국(도시)

        싱가포르

      • 서명/저자사항

        Textbook of membrane biology / Rashmi Wardhan, Padmshree Mudgal

      • 형태사항

        xxv, 368 pages : illustrations ; 27 cm

      • 일반주기명

        Includes bibliographical references

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • 1 Introduction to Biomembranes = 1
      • 1.1 Overview = 1
      • 1.1.1 Selectively Permeable Barrier = 1
      • 1.1.2 Interaction and Communication with External Environment = 1
      • CONTENTS
      • 1 Introduction to Biomembranes = 1
      • 1.1 Overview = 1
      • 1.1.1 Selectively Permeable Barrier = 1
      • 1.1.2 Interaction and Communication with External Environment = 1
      • 1.1.3 Energy Transduction = 1
      • 1.1.4 Intracellular Transport = 1
      • 1.1.5 Transmission of Nerve Impulse = 2
      • 1.1.6 Cell–Cell Interaction = 2
      • 1.2 Historical Background = 2
      • 1.3 Composition of Biological Membranes = 7
      • 1.3.1 Membrane Lipids = 9
      • 1.3.2 Phospholipids = 10
      • 1.3.3 Glycolipids = 14
      • 1.3.4 Sterols = 14
      • 1.4 Unique Lipid Composition of Cell Organelle Membranes = 15
      • 1.5 Transbilayer Lipid Asymmetry = 17
      • 1.6 Carbohydrates in Membranes = 20
      • References = 27
      • 2 Membrane Structure = 29
      • 2.1 Lipid Water Systems : Thermodynamics, CMC = 29
      • 2.1.1 Determination of CMC = 30
      • 2.1.2 Surface Tension = 30
      • 2.1.3 Conductivity = 31
      • 2.1.4 Polymorphic Lipid–Water Systems/Phases = 31
      • 2.2 Determinants of Polymorphic Phases: Shapes, Critical Packing Parameter = 33
      • 2.3 Lipid Phase Transitions = 35
      • 2.4 Technique Used to Study Lipid Phase Transitions = 35
      • 2.5 Factors Affecting Lipid Phase Transitions = 36
      • 2.6 Polymorphic Lipid Phases and Their Physiological Roles = 37
      • 2.6.1 Membrane Curvature = 38
      • 2.6.2 Fusion = 39
      • 2.6.3 Transbilayer Transport = 41
      • 2.6.4 Lipid Rafts = 41
      • 2.7 Model Membrane Systems = 42
      • 2.7.1 Lipid Monolayers = 42
      • 2.7.2 Supported Planar Lipid Bilayer = 43
      • 2.7.3 Planar Bilayer at the Tip of Patch Pipette = 43
      • 2.7.4 Liposomes = 44
      • 2.7.5 Nanodisks = 46
      • 2.7.6 Black Lipid Membranes (BLMs) = 47
      • References = 47
      • 3 Membrane Proteins = 49
      • 3.1 Types of Membrane Proteins = 49
      • 3.1.1 Peripheral Proteins = 50
      • 3.1.2 Integral Membrane Proteins (IMP) = 53
      • 3.1.3 Lipid-Anchored Proteins = 59
      • 3.2 Techniques to Study Membrane Proteins = 64
      • 3.2.1 Cell Disruption Methods = 64
      • 3.2.2 Membrane Separation and Isolation = 67
      • 3.2.3 Solubilization of Membrane Proteins = 71
      • 3.2.4 Membrane Protein Purification and Characterization = 74
      • 3.3 Membrane Protein Topology = 76
      • 3.3.1 The Major Membrane Topology Determinants Are as Follows = 78
      • 3.3.2 Experimental Tools to Determine the Membrane Topology of Proteins = 78
      • References = 79
      • 4 Function and Characterization of Cellular Membranes = 81
      • 4.1 Plasma Membrane : Specialized Membrane Structures = 81
      • 4.1.1 Tight Junctions = 81
      • 4.1.2 Desmosomes = 84
      • 4.1.3 Hemidesmosomes = 85
      • 4.1.4 Gap Junctions = 86
      • 4.1.5 Lipid Rafts = 90
      • 4.2 The Nuclear Envelope = 93
      • 4.2.1 Nuclear Envelope Breakdown During Mitosis = 94
      • 4.2.2 The Nuclear Envelope Reformation = 96
      • 4.3 Endoplasmic Reticulum = 97
      • 4.4 Golgi Apparatus = 102
      • 4.4.1 Functions of Golgi Apparatus = 103
      • 4.5 Lysosomes = 107
      • 4.6 Outer and Inner Mitochondrial Membranes = 111
      • 4.6.1 The Mitochondrial Outer Membrane (MOM) = 112
      • 4.6.2 The Inner Membrane = 116
      • References = 119
      • 5 Membrane Dynamics = 121
      • 5.1 Membrane Fluidity = 121
      • 5.2 Motion of Membrane Components = 121
      • 5.3 Factors Affecting Membrane Fluidity = 124
      • 5.3.1 Lipid Composition = 124
      • 5.3.2 Diet = 125
      • 5.3.3 Temperature = 125
      • 5.3.4 Osmotic Stress = 125
      • 5.3.5 Cell Cycle and Development = 125
      • 5.3.6 Disease = 125
      • 5.3.7 Anesthetics = 126
      • 5.3.8 Ca²⁺ and Other Divalent Cations = 126
      • 5.4 Techniques to Determine the Rate of Molecular Motion in Membranes = 126
      • 5.4.1 Techniques to Study Lateral Diffusion in Membranes = 126
      • 5.4.2 Confocal Microscopy = 126
      • 5.4.3 Fluorescence Recovery After Photobleaching (FRAP) = 127
      • 5.4.4 Fluorescence Correlation Spectroscopy (FCS) = 128
      • 5.4.5 Förster Resonance Energy Transfer (FRET) = 129
      • 5.4.6 Single-Particle Tracking (SPT) = 131
      • 5.4.7 Techniques to Study Rotational Motion in Membranes = 131
      • 5.4.8 Techniques to Study Transbilayer Motion in Membranes = 132
      • 5.5 Barriers Affecting Lateral Diffusion of Molecules in Membranes = 134
      • 5.5.1 Physical Barriers = 134
      • 5.5.2 The Cytoskeleton = 134
      • 5.5.3 Membrane–Membrane Junctions = 136
      • 5.5.4 Membrane–Matrix Junctions = 136
      • 5.5.5 Intramembranous Clusters = 136
      • 5.6 Polarized Cells = 138
      • 5.6.1 Epithelial Cell = 138
      • 5.6.2 Neuron = 139
      • 5.7 Organization of the Erythrocyte Membrane = 140
      • 5.7.1 Membrane Proteins = 141
      • 5.7.2 Integral Membrane Proteins = 143
      • 5.7.3 Peripheral Membrane Proteins = 144
      • 5.8 Homeoviscous Adaptation = 145
      • References = 146
      • 6 Membrane Transport = 149
      • 6.1 Introduction = 149
      • 6.2 Passive Diffusion = 150
      • 6.3 Facilitated Transport of Glucose = 151
      • 6.4 Facilitated Chloride–Bicarbonate Transport = 154
      • 6.5 Primary Active Transport = 156
      • 6.6 P-Type (E₁–E₂) ATPases = 156
      • 6.6.1 Structure of P-Type ATPases = 158
      • 6.6.2 Phosphorylation Domain = 158
      • 6.6.3 Nucleotide-Binding Domain = 158
      • 6.6.4 The Actuator Domain = 159
      • 6.6.5 Membrane Domain = 159
      • 6.6.6 Transport Cycle of P-Type ATPases = 159
      • 6.7 Vacuolar [V-Type] ATPases = 160
      • 6.8 Secondary Transport = 163
      • 6.8.1 Secondary Transport of Disaccharide Lactose by Lactose Permease (LacY) = 164
      • 6.8.2 Sodium/Glucose Secondary Transport = 165
      • 6.9 ABC Transporter = 167
      • 6.9.1 Mechanism of ABC Transporter = 168
      • 6.9.2 Classification of ABC Transporters in Mammals = 169
      • 6.10 Lipid Transporters in Maintaining Membrane Asymmetry = 170
      • 6.11 Aquaporins = 171
      • 6.11.1 Structure and Function of Aquaporins = 171
      • 6.12 Active Transport Through Group Translocation in Bacteria = 174
      • 6.12.1 Phosphoenolpyruvate (PEP) : Carbohydrate Phosphotransferase System = 174
      • 6.13 Light-Driven Transport = 175
      • 6.14 Pore-Forming Toxins = 179
      • 6.14.1 Activated Signal Pathway and Toxin Effect in Host Cells = 186
      • 6.15 Ionophores = 186
      • 6.16 Porins in Biological Membranes = 191
      • 6.17 Transport by Channel Proteins = 194
      • 6.18 Transport Through Ion Channel P2X Receptors = 194
      • 6.19 The Pentamer Cysteine Loop Gama-Amino Butyric Acid Receptors (GABAA)= 194
      • 6.20 Tetrameric Ionotropic Glutamate Receptor Channels N-Methyl-D-Aspartate (NMDA)= 196
      • 6.21 Voltage-Gated Ion Channels = 198
      • 6.22 K2P Channels Are Not Leaky Channels = 201
      • References = 202
      • 7 Nerve Transmission = 205
      • 7.1 Introduction = 205
      • 7.2 Nernst Equation = 205
      • 7.3 Nerve Cell = 207
      • 7.4 Resting Membrane Potential = 209
      • 7.5 Action Potential = 210
      • 7.5.1 Refractory Period = 212
      • 7.6 Propagation of Action Potential = 213
      • 7.7 Saltatory Conduction = 213
      • 7.8 Electrical and Chemical Synapses = 214
      • 7.9 Exocytosis of Neurotransmitter = 219
      • References = 222
      • 8 Bioenergetics and Energy Transduction = 223
      • 8.1 Bioenergetics = 223
      • 8.1.1 Difference Between ΔG and ΔG⁰ = 227
      • 8.1.2 Energy Currency of the Cell = 228
      • 8.2 Oxidation–Reduction Potential = 228
      • 8.3 Types of Electron Carriers = 231
      • 8.4 Oxidative Phosphorylation = 234
      • 8.4.1 Sequence of Electron Carriers in Electron Transport Chain = 234
      • 8.5 Electron Transport Complexes = 237
      • 8.5.1 Complex Ⅰ = 237
      • 8.5.2 Complex Ⅱ = 241
      • 8.5.3 Complex Ⅲ = 242
      • 8.5.4 Complex Ⅳ = 246
      • 8.6 Chemiosmotic Theory and Proton-Motive Force = 250
      • 8.7 ATP Synthesis = 251
      • 8.8 The Electron Transport Chain—An Overview = 255
      • 8.9 Regulation of Oxidative Phosphorylation = 257
      • 8.9.1 The Availability of Substrates = 257
      • 8.9.2 Proton Permeability of Membranes = 259
      • 8.9.3 Reactive Oxygen Species (ROS) Production = 261
      • 8.9.4 Apoptosis = 261
      • 8.10 Photosynthesis = 263
      • 8.11 Light Energy = 264
      • 8.11.1 Site of Photosynthesis = 268
      • 8.12 Process of Light Reaction of Photosynthesis = 270
      • 8.12.1 Purple Photosynthetic Bacteria = 272
      • 8.12.2 Plants = 274
      • 8.12.3 Photoreaction = 277
      • 8.12.4 Electron Transport Through PSII = 277
      • 8.12.5 Mechanism of O₂ Evolution = 279
      • 8.12.6 The Cytochrome b₆f Connects PSII and PSI = 280
      • 8.12.7 Electron Transport Through PSI = 282
      • 8.12.8 Physical Arrangement Within the Thylakoid = 282
      • 8.12.9 Cyclic Photophosphorylation = 285
      • 8.12.10 The Stoichiometry of Photophosphorylation = 285
      • 8.13 Carbon Assimilation = 287
      • 8.13.1 Phase 1 : Carbon Fixation = 287
      • 8.13.2 Phase 2 : Reduction = 287
      • 8.13.3 Phase 3 : Formation of Hexose Sugar and Regeneration of RuBP = 287
      • 8.13.4 Alternate Pathways of Carbon Fixation in Hot, Arid Climates = 289
      • 8.13.5 Biological Adaptation to Minimize Photorespiration = 289
      • References = 291
      • 9 Membrane Receptors and Signal Transduction Pathway = 293
      • 9.1 Hormone Receptors = 293
      • 9.2 G-Protein-Coupled Signaling Pathway = 293
      • 9.3 G-Protein-Dependent Signaling Through cAMP 295
      • 9.4 G-Protein-Coupled Receptor Kinases . . 295
      • 9.5 Tyrosine Kinase-Mediated Receptor Signaling = 299
      • 9.6 Transactivation of Epidermal Growth Factor Receptor by G-Protein Couple Receptors = 303
      • 9.7 G-Protein-Independent Signaling = 304
      • 9.7.1 β Arrestin-Dependent Signaling = 304
      • 9.7.2 Chemokine Receptors Signaling = 309
      • 9.8 The Janus Kinases and Signal Transducers and Activators of Transcription = 310
      • 9.8.1 Cytokine Receptor Signaling via JAKs = 311
      • 9.8.2 Signal Transducers and Activators of Transcriptions (STATs) = 312
      • 9.9 Receptor Serine/Threonine Kinases = 314
      • 9.9.1 Serine/Threonine Kinase Signaling in T-Cell Proliferation = 315
      • 9.9.2 Serine–Threonine Kinase Pathways Regulation by Ras = 317
      • 9.9.3 The Serine–Threonine Kinase Akt = 318
      • 9.10 Tumor Growth Factor (TGF-β) Signaling = 319
      • 9.11 Atrial Natriuretic Peptide Signaling = 322
      • 9.12 Cell Adhesion Receptors = 326
      • 9.12.1 Selectins = 331
      • 9.13 Immunoglobulin Superfamily Receptors = 332
      • 9.13.1 Major Histocompatibility Complex (MHC) = 338
      • 9.13.2 Surface Immunoglobulins = 342
      • References = 343
      • 10 Recycling of Membranes = 345
      • 10.1 Introduction = 345
      • 10.2 Type of Vesicle Transport = 345
      • 10.3 Clathrin-Coated Vesicles Mediated Endocytosis and Recycling of Membrane = 347
      • 10.3.1 The Clathrin-Coated Vesicle (CCV) Cycling = 347
      • 10.3.2 Constitutive and Inducible Endocytosis by Clathrin Coating Vesicle = 350
      • 10.4 Noncoated Vesicles in Endocytosis = 350
      • 10.5 Clathrin-Independent Endocytosis (CIE) = 351
      • 10.5.1 Endocytosis by Caveolae = 351
      • 10.5.2 The Clathrin-Independent Carrier (CLIC)—GPI-Anchored Protein-Enriched Early Endosomal Compartment (GEEC) Cycling = 354
      • 10.6 Coatomer Protein (COP) Vesicles = 356
      • 10.6.1 The Coatomer Protein Ⅰ (COP)I in Transport = 356
      • 10.6.2 Coatomer Protein (COP) Ⅱ Vesicles in Transport = 357
      • 10.7 Internalization by the Exomer Complex = 358
      • 10.8 Recycling of Synaptic Vesicle = 360
      • 10.9 Exocytosis = 361
      • References = 368
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼