RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A far‐red‐emitting (Gd,Y)3(Ga,Al)5O12:Mn2+ ceramic phosphor with enhanced thermal stability for plant cultivation

      한글로보기

      https://www.riss.kr/link?id=O113161625

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2020년

      • 작성언어

        -

      • Print ISSN

        0002-7820

      • Online ISSN

        1551-2916

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        5157-5168   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As for plants, far‐red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light‐controlled development depends on light to control cell differentiation, structural and functional changes, and finally converge into the formation of tissues and organs. Phosphor converted FR emission under LED excitation is a cost‐effective and high‐efficient way to provide artificial FR light source. With the aim to develop an efficient FR phosphor that can promote the plant growth, a series of gadolinium yttrium gallium garnet (GYGAG) transparent ceramic phosphors co‐doped with Mn2+ and Si4+ have been fabricated via chemical co‐precipitation method, followed sintered in O2 and hot isostatic pressing in this work. Under UV excitation, the phosphor exhibited two bright and broadband red emission spectra due to Mn2+: 4T1 → 6A1 spin‐forbidden transition, and one of which located in the right FR region. And then, Ce3+ ions were co‐doped as the activator to enhance the absorption at blue light region and the emission of Mn2+. It turns out that the emission band of GYGAG transparent ceramic phosphors matches well with the absorption band of phytochrome PFR, which means they are promising to be applied in plant cultivation light‐emitting diodes (LEDs) for modulating plant growth. Besides, the thermal stability of this material was investigated systematically, and an energy transferring model involves defects was also proposed to explain the phenomenon of abnormal temperature quenching.
      번역하기

      As for plants, far‐red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light‐controlled development depends on light to control cell differentiation, structural and functional ...

      As for plants, far‐red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light‐controlled development depends on light to control cell differentiation, structural and functional changes, and finally converge into the formation of tissues and organs. Phosphor converted FR emission under LED excitation is a cost‐effective and high‐efficient way to provide artificial FR light source. With the aim to develop an efficient FR phosphor that can promote the plant growth, a series of gadolinium yttrium gallium garnet (GYGAG) transparent ceramic phosphors co‐doped with Mn2+ and Si4+ have been fabricated via chemical co‐precipitation method, followed sintered in O2 and hot isostatic pressing in this work. Under UV excitation, the phosphor exhibited two bright and broadband red emission spectra due to Mn2+: 4T1 → 6A1 spin‐forbidden transition, and one of which located in the right FR region. And then, Ce3+ ions were co‐doped as the activator to enhance the absorption at blue light region and the emission of Mn2+. It turns out that the emission band of GYGAG transparent ceramic phosphors matches well with the absorption band of phytochrome PFR, which means they are promising to be applied in plant cultivation light‐emitting diodes (LEDs) for modulating plant growth. Besides, the thermal stability of this material was investigated systematically, and an energy transferring model involves defects was also proposed to explain the phenomenon of abnormal temperature quenching.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼