As for plants, far‐red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light‐controlled development depends on light to control cell differentiation, structural and functional ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O113161625
Xuting Qiu ; Zhaohua Luo ; Haochuan Jiang ; Hui Ding ; Zehua Liu ; Xiaopu Chen ; Jingtao Xu ; Jun Jiang
2020년
-
0002-7820
1551-2916
SCI;SCIE;SCOPUS
학술저널
5157-5168 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
As for plants, far‐red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light‐controlled development depends on light to control cell differentiation, structural and functional ...
As for plants, far‐red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light‐controlled development depends on light to control cell differentiation, structural and functional changes, and finally converge into the formation of tissues and organs. Phosphor converted FR emission under LED excitation is a cost‐effective and high‐efficient way to provide artificial FR light source. With the aim to develop an efficient FR phosphor that can promote the plant growth, a series of gadolinium yttrium gallium garnet (GYGAG) transparent ceramic phosphors co‐doped with Mn2+ and Si4+ have been fabricated via chemical co‐precipitation method, followed sintered in O2 and hot isostatic pressing in this work. Under UV excitation, the phosphor exhibited two bright and broadband red emission spectra due to Mn2+: 4T1 → 6A1 spin‐forbidden transition, and one of which located in the right FR region. And then, Ce3+ ions were co‐doped as the activator to enhance the absorption at blue light region and the emission of Mn2+. It turns out that the emission band of GYGAG transparent ceramic phosphors matches well with the absorption band of phytochrome PFR, which means they are promising to be applied in plant cultivation light‐emitting diodes (LEDs) for modulating plant growth. Besides, the thermal stability of this material was investigated systematically, and an energy transferring model involves defects was also proposed to explain the phenomenon of abnormal temperature quenching.
A data‐driven approach for predicting nepheline crystallization in high‐level waste glasses
Optimization of electrical conductivity in the Na2O‐P2O5‐AlF3‐SO3 glass system